English

Find the present value of an annuity due of ₹600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350] - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]

Sum

Solution

Given: C = ₹ 600,
Amount is invested every quarter for one year.
∴ n = 4
Rate of interest is 32% p.a.
∴ r = `(32)/(4)` = 8%

i = `"r"/(100) = (8)/(100)` = 0.08

Now, P' = `("C"(1 + "i"))/"i"[1 - (1 + "i")^-"n"]`

∴ P' = `(600(1 + 0.08))/(0.08)[1 - (1 + 0.08)^-4]`

= `(600(1.08))/(0.08)[1 - (1.08)^-4]`

= (7,500)(1.08)[1 – 0.7350]
= 8,100 × 0.2650
P' = 2,146.5
∴ Present value of annuity due is ₹ 2,146.5.

shaalaa.com
Annuity
  Is there an error in this question or solution?
Chapter 2: Insurance and Annuity - Exercise 2.2 [Page 28]

APPEARS IN

RELATED QUESTIONS

Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]


Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]


Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.


Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]


Choose the correct alternative :

Amount of money today which is equal to series of payments in future is called


In an ordinary annuity, payments or receipts occur at ______. 


Choose the correct alternative :

A retirement annuity is particularly attractive to someone who has


Fill in the blank :

The person who receives annuity is called __________.


Fill in the blank :

The intervening time between payment of two successive installments is called as ___________.


Fill in the blank :

An annuity where payments continue forever is called __________.


Fill in the blank :

If payments of an annuity fall due at the end of every period, the series is called annuity __________.


Solve the following :

A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.


Solve the following :

Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]


Solve the following :

After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]


Multiple choice questions:

In an ordinary annuity, payments or receipts occur at ______


State whether the following statement is True or False:

Annuity contingent begins and ends on certain fixed dates


A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?


Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]


For annuity due,

C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513

Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`

= 2,00,000 [1 – 0.7513]

= ₹ `square`


The future amount, A = ₹ 10,00,000

Period, n = 20, r = 5%, (1.025)20 = 1.675

A = `"C"/"I" [(1 + "i")^"n" - 1]`

I = `5/200` = `square` as interest is calculated semi-annually

A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`

10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`

= `"C"/0.025 [1.675 - 1]`

10,00,000 = `("C" xx 0.675)/0.025`

C = ₹ `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×