English

For annuity due, C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513 Therefore, P = □0.1×[1-(1+0.1)□] = 2,00,000 [1 – 0.7513] = ₹ □ - Mathematics and Statistics

Advertisements
Advertisements

Question

For annuity due,

C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513

Therefore, P = 0.1×[1-(1+0.1)]

= 2,00,000 [1 – 0.7513]

= ₹

Fill in the Blanks
Sum

Solution

For annuity due,

C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513

Therefore, P = 20,0000.1×[1-(1+0.1)-3]

= 2,00,000 [1 – 0.7513]

= ₹ 49,740

shaalaa.com
Annuity
  Is there an error in this question or solution?
Chapter 2.2: Insurance and Annuity - Q.5

RELATED QUESTIONS

A person wants to create a fund of ₹6,96,150 after 4 years at the time of his retirement. He decides to invest a fixed amount at the end of every year in a bank that offers him interest of 10% p.a. compounded annually. What amount should he invest every year? [Given (1.1)4 = 1.4641]


Choose the correct alternative :

Amount of money today which is equal to series of payments in future is called


In an ordinary annuity, payments or receipts occur at ______. 


Choose the correct alternative :

Rental payment for an apartment is an example of


Fill in the blank :

If payments of an annuity fall due at the end of every period, the series is called annuity __________.


Solve the following :

Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]


Solve the following :

Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.


Solve the following :

A person purchases a television by paying ₹20,000 in cash and promising to pay ₹1,000 at end of every month for the next 2 years. If money is worth 12% p. a. converted monthly, find the cash price of the television. [(1.01)–24 = 0.7875]


Solve the following :

Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]


Solve the following :

Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]


Multiple choice questions:

Rental payment for an apartment is an example of ______


State whether the following statement is True or False:

A sinking fund is a fund established by financial organization


State whether the following statement is True or False:

The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n 


State whether the following statement is True or False:

The future value of an annuity is the accumulated values of all instalments


State whether the following statement is True or False:

An annuity where payments continue forever is called perpetuity


In ordinary annuity, payments or receipts occur at ______


The present value of an immediate annuity for 4 years at 10% p.a. compounded annually is ₹ 23,400. It’s accumulated value after 4 years would be ₹ ______


Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]


A company decides to set aside a certain sum at the end of each year to create a sinking fund, which should amount to ₹ 4 lakhs in 4 years at 10% p.a. Find the amount to be set aside each year?
[Given (1.1)4 = 1.4641]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.