English

In an ordinary annuity, payments or receipts occur at ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

In an ordinary annuity, payments or receipts occur at ______. 

Options

  • Beginning of each period

  • End of each period

  • Mid of each period

  • Quarterly basis

MCQ
Fill in the Blanks

Solution

In an ordinary annuity, payments or receipts occur at end of each period

Explanation:

Payments are made at the conclusion of each period (such as a month, quarter, or year) in an ordinary annuity. Bond interest payments, mortgage payments, and loan payments are typical instances. As a result, payments for an annuity due are made at the start of each period. 

shaalaa.com
Annuity
  Is there an error in this question or solution?
Chapter 2: Insurance and Annuity - Miscellaneous Exercise 2 [Page 29]

RELATED QUESTIONS

Find the accumulated (future) value of annuity of ₹ 800 for 3 years at interest rate 8% compounded annually. [Given (1.08)3 = 1.2597]


A person wants to create a fund of ₹6,96,150 after 4 years at the time of his retirement. He decides to invest a fixed amount at the end of every year in a bank that offers him interest of 10% p.a. compounded annually. What amount should he invest every year? [Given (1.1)4 = 1.4641]


Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.


Find the number of years for which an annuity of ₹500 is paid at the end of every year, if the accumulated amount works out to be ₹1,655 when interest is compounded annually at 10% p.a.


Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]


Choose the correct alternative :

You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?


______ is a series of constant cash flows over a limited period of time.


Fill in the blank :

The payment of each single annuity is called __________.


Fill in the blank :

An annuity where payments continue forever is called __________.


Fill in the blank :

If payments of an annuity fall due at the beginning of every period, the series is called annuity __________.


State whether the following is True or False :

The present value of an annuity is the sum of the present value of all installments.


Solve the following :

A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.


Solve the following :

Find the amount a company should set aside at the end of every year if it wants to buy a machine expected to cost ₹1,00,000 at the end of 4 years and interest rate is 5% p. a. compounded annually. [(1.05)4 = 1.21550625]


Solve the following :

Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]


Solve the following :

A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]


Multiple choice questions:

Rental payment for an apartment is an example of ______


Multiple choice questions:  

In annuity calculations, the interest is usually taken as ______


State whether the following statement is True or False:

A sinking fund is a fund established by financial organization


State whether the following statement is True or False:

The future value of an annuity is the accumulated values of all instalments


State whether the following statement is True or False:

Annuity contingent begins and ends on certain fixed dates


An annuity in which each payment is made at the end of period is called ______


The intervening time between payment of two successive installments is called as ______


Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]


The future amount, A = ₹ 10,00,000

Period, n = 20, r = 5%, (1.025)20 = 1.675

A = `"C"/"I" [(1 + "i")^"n" - 1]`

I = `5/200` = `square` as interest is calculated semi-annually

A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`

10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`

= `"C"/0.025 [1.675 - 1]`

10,00,000 = `("C" xx 0.675)/0.025`

C = ₹ `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×