Advertisements
Advertisements
Question
Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.
Solution
Given, C = ₹20,000, A = ₹2,60,000, n = 3 years.
Now, A = `"C"/"i"[(1 + "I")^"n" - 1]`
∴ 2,60,000 = `(20,000)/"i"[(1 + "i")^3 - 1]`
∴ `(2,60,000)/(20,000) = (1)/"i" [1 + 3"i" + 3"i"^2 + "i"^3 - 1]`
∴ 13 = `(3"i" + 3"i"^2 + "i"^3)/"i"`
∴ 13 = 3 + 3i + i2
∴ i2 + 3i – 10 = 0
∴ i2 + 5i – 2i – 10 = 0
∴ i(i + 5) – 2(i + 5) = 0
∴ (i + 5)(i – 2) = 0
∴ i = – 5 or i = 2
But, i cannot be negative.
∴ i = 2
∴ `"r"/(100)` = 2
∴ r = 200% p.a.
∴ The rate of interest is 200% p.a.
APPEARS IN
RELATED QUESTIONS
Find accumulated value after 1 year of an annuity immediate in which ₹ 10,000 is invested every quarter at 16% p.a. compounded quarterly. [Given (1.04)4 = 1.1699]
Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]
Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]
Choose the correct alternative :
Amount of money today which is equal to series of payments in future is called
Fill in the blank :
The payment of each single annuity is called __________.
State whether the following is True or False :
The present value of an annuity is the sum of the present value of all installments.
State whether the following is True or False :
The future value of an annuity is the accumulated values of all installments.
State whether the following is True or False :
Sinking fund is set aside at the beginning of a business.
Solve the following :
A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.
Solve the following :
Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
Solve the following :
A person purchases a television by paying ₹20,000 in cash and promising to pay ₹1,000 at end of every month for the next 2 years. If money is worth 12% p. a. converted monthly, find the cash price of the television. [(1.01)–24 = 0.7875]
Multiple choice questions:
In an ordinary annuity, payments or receipts occur at ______
Multiple choice questions:
In annuity calculations, the interest is usually taken as ______
Multiple choice questions:
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
Multiple choice questions:
The present value of an immediate annuity of ₹ 10,000 paid each quarter for four quarters at 16% p.a. compounded quarterly is ______
State whether the following statement is True or False:
A sinking fund is a fund established by financial organization
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]
For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year
∴ Rate of interest per quarter = `square/4` = 4
⇒ r = 4%
⇒ i = `square/100 = 4/100` = 0.04
n = Number of quarters
= 4 × 1
= `square`
⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`
⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`
= `(2000(square))/square [1 - (square)^-4]`
= 50,000`(square)`[1 – 0.8548]
= ₹ 7,550.40