Advertisements
Advertisements
प्रश्न
Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.
उत्तर
Given, C = ₹20,000, A = ₹2,60,000, n = 3 years.
Now, A = `"C"/"i"[(1 + "I")^"n" - 1]`
∴ 2,60,000 = `(20,000)/"i"[(1 + "i")^3 - 1]`
∴ `(2,60,000)/(20,000) = (1)/"i" [1 + 3"i" + 3"i"^2 + "i"^3 - 1]`
∴ 13 = `(3"i" + 3"i"^2 + "i"^3)/"i"`
∴ 13 = 3 + 3i + i2
∴ i2 + 3i – 10 = 0
∴ i2 + 5i – 2i – 10 = 0
∴ i(i + 5) – 2(i + 5) = 0
∴ (i + 5)(i – 2) = 0
∴ i = – 5 or i = 2
But, i cannot be negative.
∴ i = 2
∴ `"r"/(100)` = 2
∴ r = 200% p.a.
∴ The rate of interest is 200% p.a.
APPEARS IN
संबंधित प्रश्न
Find the present value of an annuity immediate of ₹36,000 p.a. for 3 years at 9% p.a. compounded annually. [Given (1.09)−3 = 0.7722]
Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]
A person sets up a sinking fund in order to have ₹ 1,00,000 after 10 years. What amount should be deposited bi-annually in the account that pays him 5% p.a. compounded semi-annually? [Given (1.025)20 = 1.675]
Choose the correct alternative :
Amount of money today which is equal to series of payments in future is called
Fill in the blank :
The person who receives annuity is called __________.
Fill in the blank :
The payment of each single annuity is called __________.
State whether the following is True or False :
Annuity contingent begins and ends on certain fixed dates.
State whether the following is True or False :
The present value of an annuity is the sum of the present value of all installments.
State whether the following is True or False :
The future value of an annuity is the accumulated values of all installments.
Solve the following :
Find the amount a company should set aside at the end of every year if it wants to buy a machine expected to cost ₹1,00,000 at the end of 4 years and interest rate is 5% p. a. compounded annually. [(1.05)4 = 1.21550625]
Solve the following :
Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]
Solve the following :
Some machinery is expected to cost 25% more over its present cost of ₹6,96,000 after 20 years. The scrap value of the machinery will realize ₹1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given (1.05)20= 2.653]
Multiple choice questions:
Rental payment for an apartment is an example of ______
Multiple choice questions:
In an ordinary annuity, payments or receipts occur at ______
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
State whether the following statement is True or False:
Annuity contingent begins and ends on certain fixed dates
The present value of an immediate annuity for 4 years at 10% p.a. compounded annually is ₹ 23,400. It’s accumulated value after 4 years would be ₹ ______
For annuity due,
C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513
Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`
= 2,00,000 [1 – 0.7513]
= ₹ `square`