Advertisements
Advertisements
प्रश्न
For annuity due,
C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513
Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`
= 2,00,000 [1 – 0.7513]
= ₹ `square`
उत्तर
For annuity due,
C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513
Therefore, P = `(20,000)/0.1 xx [1 - (1 + 0.1)^-3]`
= 2,00,000 [1 – 0.7513]
= ₹ 49,740
APPEARS IN
संबंधित प्रश्न
Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]
Find accumulated value after 1 year of an annuity immediate in which ₹ 10,000 is invested every quarter at 16% p.a. compounded quarterly. [Given (1.04)4 = 1.1699]
Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]
For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]
______ is a series of constant cash flows over a limited period of time.
Choose the correct alternative :
A retirement annuity is particularly attractive to someone who has
Fill in the blank :
The intervening time between payment of two successive installments is called as ___________.
Fill in the blank :
An annuity where payments continue forever is called __________.
State whether the following is True or False :
Annuity certain begins on a fixed date and ends when an event happens.
Solve the following :
Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]
Solve the following :
Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.
Solve the following :
A person purchases a television by paying ₹20,000 in cash and promising to pay ₹1,000 at end of every month for the next 2 years. If money is worth 12% p. a. converted monthly, find the cash price of the television. [(1.01)–24 = 0.7875]
Solve the following :
A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]
Solve the following :
Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]
Solve the following :
After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]
Multiple choice questions:
In annuity calculations, the interest is usually taken as ______
If payments of an annuity fall due at the beginning of every period, the series is called annuity ______
A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?