मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]

बेरीज

उत्तर

Given, C = ₹ 24,000, Since amount is invested at the end of every 6 months for two years, it is an immediate annuity.
∴ n = 2 x 2 = 4 half years.
Rate of interest is 12% p.a

∴ r = `(12)/(2)` = 6% for six months

i = `"r"/(100) = (6)/(100)` = 0.06

Now, A = `"C"/"i"[(1 + "i")^"n" - 1]`

= `(24,000)/(0.06)[(1 + 0.06)^4 - 1]`

= `(24,000 xx 100)/(0.06 xx 100)[(1.06)^4 - 1`

= `(24,00,000)/6(1.2625 - 1)`

= 4,00,000 × 0.2625

∴ = 1,05,000

∴ Amount accumulated after 2 years is ₹ 1,05,000.

shaalaa.com
Annuity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Insurance and Annuity - Exercise 2.2 [पृष्ठ २७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Insurance and Annuity
Exercise 2.2 | Q 1.03 | पृष्ठ २७

संबंधित प्रश्‍न

A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]


Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]


A person wants to create a fund of ₹6,96,150 after 4 years at the time of his retirement. He decides to invest a fixed amount at the end of every year in a bank that offers him interest of 10% p.a. compounded annually. What amount should he invest every year? [Given (1.1)4 = 1.4641]


Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.


A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.


Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]


Choose the correct alternative :

A retirement annuity is particularly attractive to someone who has


Fill in the blank :

The person who receives annuity is called __________.


Fill in the blank :

The payment of each single annuity is called __________.


Fill in the blank :

If payments of an annuity fall due at the end of every period, the series is called annuity __________.


State whether the following is True or False :

Payment of every annuity is called an installment.


State whether the following is True or False :

Annuity certain begins on a fixed date and ends when an event happens.


Solve the following :

Find the amount a company should set aside at the end of every year if it wants to buy a machine expected to cost ₹1,00,000 at the end of 4 years and interest rate is 5% p. a. compounded annually. [(1.05)4 = 1.21550625]


Solve the following :

Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]


State whether the following statement is True or False:

An annuity where payments continue forever is called perpetuity


In ordinary annuity, payments or receipts occur at ______


If payments of an annuity fall due at the beginning of every period, the series is called annuity ______


For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year

∴ Rate of interest per quarter = `square/4` = 4

⇒ r = 4%

⇒ i = `square/100 = 4/100` = 0.04

n = Number of quarters

= 4 × 1

= `square`

⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`

⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`

= `(2000(square))/square [1 - (square)^-4]`

= 50,000`(square)`[1 – 0.8548]

= ₹ 7,550.40


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×