Advertisements
Advertisements
Question
Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]
Solution
Given, C = ₹ 24,000, Since amount is invested at the end of every 6 months for two years, it is an immediate annuity.
∴ n = 2 x 2 = 4 half years.
Rate of interest is 12% p.a
∴ r = `(12)/(2)` = 6% for six months
i = `"r"/(100) = (6)/(100)` = 0.06
Now, A = `"C"/"i"[(1 + "i")^"n" - 1]`
= `(24,000)/(0.06)[(1 + 0.06)^4 - 1]`
= `(24,000 xx 100)/(0.06 xx 100)[(1.06)^4 - 1`
= `(24,00,000)/6(1.2625 - 1)`
= 4,00,000 × 0.2625
∴ = 1,05,000
∴ Amount accumulated after 2 years is ₹ 1,05,000.
APPEARS IN
RELATED QUESTIONS
A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]
A lady plans to save for her daughter’s marriage. She wishes to accumulate a sum of ₹4,64,100 at the end of 4 years. What amount should she invest every year if she gets an interest of 10% p.a. compounded annually? [Given (1.1)4 = 1.4641]
Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.
A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.
For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]
A person sets up a sinking fund in order to have ₹ 1,00,000 after 10 years. What amount should be deposited bi-annually in the account that pays him 5% p.a. compounded semi-annually? [Given (1.025)20 = 1.675]
Choose the correct alternative :
You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?
In an ordinary annuity, payments or receipts occur at ______.
______ is a series of constant cash flows over a limited period of time.
Fill in the blank :
If payments of an annuity fall due at the end of every period, the series is called annuity __________.
State whether the following is True or False :
Payment of every annuity is called an installment.
State whether the following is True or False :
The present value of an annuity is the sum of the present value of all installments.
State whether the following is True or False :
The future value of an annuity is the accumulated values of all installments.
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
Solve the following :
Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]
In ordinary annuity, payments or receipts occur at ______
A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?
Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]
A company decides to set aside a certain sum at the end of each year to create a sinking fund, which should amount to ₹ 4 lakhs in 4 years at 10% p.a. Find the amount to be set aside each year?
[Given (1.1)4 = 1.4641]