English

Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625] - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]

Sum

Solution

Given, C = ₹ 24,000, Since amount is invested at the end of every 6 months for two years, it is an immediate annuity.
∴ n = 2 x 2 = 4 half years.
Rate of interest is 12% p.a

∴ r = `(12)/(2)` = 6% for six months

i = `"r"/(100) = (6)/(100)` = 0.06

Now, A = `"C"/"i"[(1 + "i")^"n" - 1]`

= `(24,000)/(0.06)[(1 + 0.06)^4 - 1]`

= `(24,000 xx 100)/(0.06 xx 100)[(1.06)^4 - 1`

= `(24,00,000)/6(1.2625 - 1)`

= 4,00,000 × 0.2625

∴ = 1,05,000

∴ Amount accumulated after 2 years is ₹ 1,05,000.

shaalaa.com
Annuity
  Is there an error in this question or solution?
Chapter 2: Insurance and Annuity - Exercise 2.2 [Page 27]

APPEARS IN

RELATED QUESTIONS

A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]


A lady plans to save for her daughter’s marriage. She wishes to accumulate a sum of ₹4,64,100 at the end of 4 years. What amount should she invest every year if she gets an interest of 10% p.a. compounded annually? [Given (1.1)4 = 1.4641]


Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.


A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.


For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]


A person sets up a sinking fund in order to have ₹ 1,00,000 after 10 years. What amount should be deposited bi-annually in the account that pays him 5% p.a. compounded semi-annually? [Given (1.025)20 = 1.675]


Choose the correct alternative :

You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?


In an ordinary annuity, payments or receipts occur at ______. 


______ is a series of constant cash flows over a limited period of time.


Fill in the blank :

If payments of an annuity fall due at the end of every period, the series is called annuity __________.


State whether the following is True or False :

Payment of every annuity is called an installment.


State whether the following is True or False :

The present value of an annuity is the sum of the present value of all installments.


State whether the following is True or False :

The future value of an annuity is the accumulated values of all installments.


Solve the following :

Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]


Solve the following :

Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]


In ordinary annuity, payments or receipts occur at ______


A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?


Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]


A company decides to set aside a certain sum at the end of each year to create a sinking fund, which should amount to ₹ 4 lakhs in 4 years at 10% p.a. Find the amount to be set aside each year?
[Given (1.1)4 = 1.4641]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×