Advertisements
Advertisements
Question
A lady plans to save for her daughter’s marriage. She wishes to accumulate a sum of ₹4,64,100 at the end of 4 years. What amount should she invest every year if she gets an interest of 10% p.a. compounded annually? [Given (1.1)4 = 1.4641]
Solution
Given, A = ₹4,64,100, n = 4 years, r = 10% p.a.
i = `"r"/(100) = (10)/(100)` = 0.1
Now, A = `"C"/"i"[(1 + "i")^"n" - 1]`
∴ 4,64,100 = `"C"/(0.1)[(1 + 0.1)^4 - 1]`
∴ 4,64,100(0.1) C[(1.1)4 – 1]
∴ 46,410 = C[1.4641 – 1]
∴ 46,410 = C(0.4641)
∴ C = `(46,410)/(0.4641)`
∴ C = 1,00,000
∴ She must invest ₹1,00,000 every year.
APPEARS IN
RELATED QUESTIONS
Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]
Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.
Find the number of years for which an annuity of ₹500 is paid at the end of every year, if the accumulated amount works out to be ₹1,655 when interest is compounded annually at 10% p.a.
Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]
Choose the correct alternative :
You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?
Choose the correct alternative :
Amount of money today which is equal to series of payments in future is called
In an ordinary annuity, payments or receipts occur at ______.
Choose the correct alternative :
Rental payment for an apartment is an example of
State whether the following is True or False :
Payment of every annuity is called an installment.
Solve the following :
A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.
Solve the following :
Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.
Solve the following :
A person purchases a television by paying ₹20,000 in cash and promising to pay ₹1,000 at end of every month for the next 2 years. If money is worth 12% p. a. converted monthly, find the cash price of the television. [(1.01)–24 = 0.7875]
Solve the following :
Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]
Solve the following :
A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]
Solve the following :
After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]
Multiple choice questions:
Rental payment for an apartment is an example of ______
If payments of an annuity fall due at the beginning of every period, the series is called annuity ______