English

Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061] - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]

Sum

Solution

Given, C = ₹ 500
Amount is invested at the end of every quarter.

∴ It is an immediate annuity.

Rate of interest is 12% p.a.

∴ r = `(12)/(4)`% = 3% per quarter

∴ i = `"r"/(100) = (3)/(100)`  0..03

The period is of 5 years and payment is made on quarterly basis.

∴ n = 5 x 4 = 20

Since, A = `"C"/"i"[(1 + "i")^"n" - 1]`

= `(500)/(0.03)[(1 + 0.03)^20 - 1]`

= `(500)/(0.03)[(1.03)^20 - 1]`

= `(500)/(0.03)(1.8061 - 1)`

= `(500)/(0.03) xx (0.8061)`

= `(403.05)/(0.03)`

= `(40305)/(3)`

= ₹ 13,435

∴ Amount of ordinary annuity is ₹ 13,435.

shaalaa.com
Annuity
  Is there an error in this question or solution?
Chapter 2.2: Insurance and Annuity - Q.4

RELATED QUESTIONS

Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]


Find the present value of an annuity immediate of ₹36,000 p.a. for 3 years at 9% p.a. compounded annually. [Given (1.09)−3 = 0.7722]


Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]


A person wants to create a fund of ₹6,96,150 after 4 years at the time of his retirement. He decides to invest a fixed amount at the end of every year in a bank that offers him interest of 10% p.a. compounded annually. What amount should he invest every year? [Given (1.1)4 = 1.4641]


A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.


Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]


For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]


______ is a series of constant cash flows over a limited period of time.


Choose the correct alternative :

A retirement annuity is particularly attractive to someone who has


Fill in the blank :

The person who receives annuity is called __________.


Fill in the blank :

The intervening time between payment of two successive installments is called as ___________.


State whether the following is True or False :

Annuity certain begins on a fixed date and ends when an event happens.


State whether the following is True or False :

Annuity contingent begins and ends on certain fixed dates.


State whether the following is True or False :

The present value of an annuity is the sum of the present value of all installments.


State whether the following is True or False :

The future value of an annuity is the accumulated values of all installments.


State whether the following is True or False :

Sinking fund is set aside at the beginning of a business.


Solve the following :

Find the amount a company should set aside at the end of every year if it wants to buy a machine expected to cost ₹1,00,000 at the end of 4 years and interest rate is 5% p. a. compounded annually. [(1.05)4 = 1.21550625]


Solve the following :

Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]


Solve the following :

Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]


Solve the following :

A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]


Solve the following :

Some machinery is expected to cost 25% more over its present cost of ₹6,96,000 after 20 years. The scrap value of the machinery will realize ₹1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given (1.05)20= 2.653]


Multiple choice questions:  

In annuity calculations, the interest is usually taken as ______


Multiple choice questions:

If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______


State whether the following statement is True or False:

The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n 


State whether the following statement is True or False:

Annuity contingent begins and ends on certain fixed dates


A company decides to set aside a certain sum at the end of each year to create a sinking fund, which should amount to ₹ 4 lakhs in 4 years at 10% p.a. Find the amount to be set aside each year?
[Given (1.1)4 = 1.4641]


For annuity due,

C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513

Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`

= 2,00,000 [1 – 0.7513]

= ₹ `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×