Advertisements
Advertisements
Question
Fill in the blank :
The person who receives annuity is called __________.
Solution
The person who receives annuity is called annuitant.
APPEARS IN
RELATED QUESTIONS
Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]
Find accumulated value after 1 year of an annuity immediate in which ₹ 10,000 is invested every quarter at 16% p.a. compounded quarterly. [Given (1.04)4 = 1.1699]
Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]
Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.
Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]
For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]
Choose the correct alternative :
You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?
Fill in the blank :
The intervening time between payment of two successive installments is called as ___________.
Fill in the blank :
If payments of an annuity fall due at the beginning of every period, the series is called annuity __________.
State whether the following is True or False :
Annuity certain begins on a fixed date and ends when an event happens.
Solve the following :
Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]
Solve the following :
Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]
Solve the following :
Some machinery is expected to cost 25% more over its present cost of ₹6,96,000 after 20 years. The scrap value of the machinery will realize ₹1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given (1.05)20= 2.653]
Multiple choice questions:
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
Multiple choice questions:
The present value of an immediate annuity of ₹ 10,000 paid each quarter for four quarters at 16% p.a. compounded quarterly is ______
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
State whether the following statement is True or False:
The future value of an annuity is the accumulated values of all instalments
For annuity due,
C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513
Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`
= 2,00,000 [1 – 0.7513]
= ₹ `square`