मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Fill in the blank : The person who receives annuity is called __________. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fill in the blank :

The person who receives annuity is called __________.

रिकाम्या जागा भरा

उत्तर

The person who receives annuity is called annuitant.

shaalaa.com
Annuity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Insurance and Annuity - Miscellaneous Exercise 2 [पृष्ठ २९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Insurance and Annuity
Miscellaneous Exercise 2 | Q 2.05 | पृष्ठ २९

संबंधित प्रश्‍न

Find accumulated value after 1 year of an annuity immediate in which ₹ 10,000 is invested every quarter at 16% p.a. compounded quarterly. [Given (1.04)4 = 1.1699]


A lady plans to save for her daughter’s marriage. She wishes to accumulate a sum of ₹4,64,100 at the end of 4 years. What amount should she invest every year if she gets an interest of 10% p.a. compounded annually? [Given (1.1)4 = 1.4641]


For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]


A person sets up a sinking fund in order to have ₹ 1,00,000 after 10 years. What amount should be deposited bi-annually in the account that pays him 5% p.a. compounded semi-annually? [Given (1.025)20 = 1.675]


Choose the correct alternative :

You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?


Choose the correct alternative :

Amount of money today which is equal to series of payments in future is called


In an ordinary annuity, payments or receipts occur at ______. 


Choose the correct alternative :

Rental payment for an apartment is an example of


Choose the correct alternative :

A retirement annuity is particularly attractive to someone who has


Solve the following :

Find the amount a company should set aside at the end of every year if it wants to buy a machine expected to cost ₹1,00,000 at the end of 4 years and interest rate is 5% p. a. compounded annually. [(1.05)4 = 1.21550625]


Solve the following :

A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]


Multiple choice questions:

Rental payment for an apartment is an example of ______


State whether the following statement is True or False:

A sinking fund is a fund established by financial organization


State whether the following statement is True or False:

An annuity where payments continue forever is called perpetuity


If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______


If payments of an annuity fall due at the beginning of every period, the series is called annuity ______


For annuity due,

C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513

Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`

= 2,00,000 [1 – 0.7513]

= ₹ `square`


The future amount, A = ₹ 10,00,000

Period, n = 20, r = 5%, (1.025)20 = 1.675

A = `"C"/"I" [(1 + "i")^"n" - 1]`

I = `5/200` = `square` as interest is calculated semi-annually

A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`

10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`

= `"C"/0.025 [1.675 - 1]`

10,00,000 = `("C" xx 0.675)/0.025`

C = ₹ `square`


For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year

∴ Rate of interest per quarter = `square/4` = 4

⇒ r = 4%

⇒ i = `square/100 = 4/100` = 0.04

n = Number of quarters

= 4 × 1

= `square`

⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`

⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`

= `(2000(square))/square [1 - (square)^-4]`

= 50,000`(square)`[1 – 0.8548]

= ₹ 7,550.40


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×