Advertisements
Advertisements
Question
Solve the following :
Some machinery is expected to cost 25% more over its present cost of ₹6,96,000 after 20 years. The scrap value of the machinery will realize ₹1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given (1.05)20= 2.653]
Solution
Since, the machinery is expected to cost 25% more over its present cost i.e., 6,96,000,
∴ Expected value of machinery
= Present cost + 25% of present cost
= `6,96,000 + 25/100 xx 6,96,000`
= 6,96,000 + 1,74,000
= ₹8,70,000
After 20 years, scrap value of the machinery is ₹ 1,50,000.
∴ Accumulated value of machinery = Expected value of machinery – Scrap value of machinery
= 8,70,000 – 1,50,000
= ₹7,20,000
∴ A = ₹ 7,20,000
Also, r = 5% p.a., n = 20 years,
i = `"r"/(100) = (5)/(100)` = 0.05
Since, A = `"C"/"i"[(1 + "i")^"n"` - 1]
∴ 7,20,000 = `"C"/(0.05)[(1 + 0.05)^20 - 1]`
∴ 7,20,000 x 0.05 - C[(1.05)20 – 1]
∴ 36,000 = C (2.653 – 1)
∴ 36,000 = C x 1.653
∴ C = `(36,000)/(1.653)`
∴ C = ₹21,778.58
∴ Sum of ₹21,778.58 should be set aside at the end of each year.
APPEARS IN
RELATED QUESTIONS
A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]
Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]
Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]
Find the number of years for which an annuity of ₹500 is paid at the end of every year, if the accumulated amount works out to be ₹1,655 when interest is compounded annually at 10% p.a.
A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.
An annuity immediate is to be paid for some years at 12% p.a. The present value of the annuity is ₹ 10,000 and the accumulated value is ₹ 20,000. Find the amount of each annuity payment
Fill in the blank :
The person who receives annuity is called __________.
Fill in the blank :
An annuity where payments continue forever is called __________.
Fill in the blank :
If payments of an annuity fall due at the beginning of every period, the series is called annuity __________.
State whether the following is True or False :
Annuity contingent begins and ends on certain fixed dates.
State whether the following is True or False :
The future value of an annuity is the accumulated values of all installments.
Solve the following :
A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.
Solve the following :
Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
Solve the following :
Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]
Solve the following :
A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]
Solve the following :
After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]
Multiple choice questions:
The present value of an immediate annuity of ₹ 10,000 paid each quarter for four quarters at 16% p.a. compounded quarterly is ______
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______