Advertisements
Advertisements
प्रश्न
Solve the following :
Some machinery is expected to cost 25% more over its present cost of ₹6,96,000 after 20 years. The scrap value of the machinery will realize ₹1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given (1.05)20= 2.653]
उत्तर
Since, the machinery is expected to cost 25% more over its present cost i.e., 6,96,000,
∴ Expected value of machinery
= Present cost + 25% of present cost
= `6,96,000 + 25/100 xx 6,96,000`
= 6,96,000 + 1,74,000
= ₹8,70,000
After 20 years, scrap value of the machinery is ₹ 1,50,000.
∴ Accumulated value of machinery = Expected value of machinery – Scrap value of machinery
= 8,70,000 – 1,50,000
= ₹7,20,000
∴ A = ₹ 7,20,000
Also, r = 5% p.a., n = 20 years,
i = `"r"/(100) = (5)/(100)` = 0.05
Since, A = `"C"/"i"[(1 + "i")^"n"` - 1]
∴ 7,20,000 = `"C"/(0.05)[(1 + 0.05)^20 - 1]`
∴ 7,20,000 x 0.05 - C[(1.05)20 – 1]
∴ 36,000 = C (2.653 – 1)
∴ 36,000 = C x 1.653
∴ C = `(36,000)/(1.653)`
∴ C = ₹21,778.58
∴ Sum of ₹21,778.58 should be set aside at the end of each year.
APPEARS IN
संबंधित प्रश्न
Find the accumulated (future) value of annuity of ₹ 800 for 3 years at interest rate 8% compounded annually. [Given (1.08)3 = 1.2597]
Find the present value of an annuity immediate of ₹36,000 p.a. for 3 years at 9% p.a. compounded annually. [Given (1.09)−3 = 0.7722]
Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]
An annuity immediate is to be paid for some years at 12% p.a. The present value of the annuity is ₹ 10,000 and the accumulated value is ₹ 20,000. Find the amount of each annuity payment
A person sets up a sinking fund in order to have ₹ 1,00,000 after 10 years. What amount should be deposited bi-annually in the account that pays him 5% p.a. compounded semi-annually? [Given (1.025)20 = 1.675]
Fill in the blank :
An annuity where payments continue forever is called __________.
State whether the following is True or False :
Annuity certain begins on a fixed date and ends when an event happens.
State whether the following is True or False :
The present value of an annuity is the sum of the present value of all installments.
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
Solve the following :
Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.
Solve the following :
A person purchases a television by paying ₹20,000 in cash and promising to pay ₹1,000 at end of every month for the next 2 years. If money is worth 12% p. a. converted monthly, find the cash price of the television. [(1.01)–24 = 0.7875]
Solve the following :
Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]
Solve the following :
Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]
Multiple choice questions:
In an ordinary annuity, payments or receipts occur at ______
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
State whether the following statement is True or False:
The future value of an annuity is the accumulated values of all instalments
An annuity in which each payment is made at the end of period is called ______
The intervening time between payment of two successive installments is called as ______