Advertisements
Advertisements
प्रश्न
Find the accumulated (future) value of annuity of ₹ 800 for 3 years at interest rate 8% compounded annually. [Given (1.08)3 = 1.2597]
उत्तर
Given, C = ₹ 800, n = 3 years, r = 8% p.a.
i = `"r"/(100) = (8)/(100)` = 0.08
Now, A = `"C"/"i"[(1 + "i")^"n" - 1]`
∴ A = `(800)/(0.08)[(1 + 0.08)^3 - 1]`
= `(800 xx 100)/(0.08 xx 100)[(1.08)^3 - 1]`
= `(80000)/8(1.2597 - 1)`
= 10,000 × 0.2597
= 2,597
∴ Accumulate (future) value of annuity is ₹ 2,597.
APPEARS IN
संबंधित प्रश्न
Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.
An annuity immediate is to be paid for some years at 12% p.a. The present value of the annuity is ₹ 10,000 and the accumulated value is ₹ 20,000. Find the amount of each annuity payment
For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]
Fill in the blank :
The payment of each single annuity is called __________.
Fill in the blank :
The intervening time between payment of two successive installments is called as ___________.
Fill in the blank :
An annuity where payments continue forever is called __________.
Fill in the blank :
If payments of an annuity fall due at the beginning of every period, the series is called annuity __________.
State whether the following is True or False :
The present value of an annuity is the sum of the present value of all installments.
State whether the following is True or False :
Sinking fund is set aside at the beginning of a business.
Solve the following :
A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.
Solve the following :
A person purchases a television by paying ₹20,000 in cash and promising to pay ₹1,000 at end of every month for the next 2 years. If money is worth 12% p. a. converted monthly, find the cash price of the television. [(1.01)–24 = 0.7875]
Solve the following :
A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]
Multiple choice questions:
In an ordinary annuity, payments or receipts occur at ______
State whether the following statement is True or False:
The future value of an annuity is the accumulated values of all instalments
The present value of an immediate annuity for 4 years at 10% p.a. compounded annually is ₹ 23,400. It’s accumulated value after 4 years would be ₹ ______
If payments of an annuity fall due at the beginning of every period, the series is called annuity ______
The intervening time between payment of two successive installments is called as ______