मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

An annuity immediate is to be paid for some years at 12% p.a. The present value of the annuity is ₹ 10,000 and the accumulated value is ₹ 20,000. Find the amount of each annuity payment - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

An annuity immediate is to be paid for some years at 12% p.a. The present value of the annuity is ₹ 10,000 and the accumulated value is ₹ 20,000. Find the amount of each annuity payment

बेरीज

उत्तर

Given, P = ₹ 10,000, r = 12% p.a., A = ₹ 20,000

∴ i = `"r"/(100) = (12)/(100)` = 0.12

Now, `(1)/"P" - (1)/"A" = "i"/"C"`

∴ `(1)/(10,000) - (1)/(20,000) = (0.12)/"C"`

∴ `(2 - 1)/(20,000) = (012)/"C"`

∴ `(1)/(20,000) = (0.12)/"C"`

∴ C = (0.12)(20,000)

∴ C = 2,400

∴ The amount of each annuity payment is ₹ 2,400.

shaalaa.com
Annuity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Insurance and Annuity - Exercise 2.2 [पृष्ठ २८]

संबंधित प्रश्‍न

A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]


Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]


Choose the correct alternative :

Amount of money today which is equal to series of payments in future is called


In an ordinary annuity, payments or receipts occur at ______. 


Choose the correct alternative :

Rental payment for an apartment is an example of


Fill in the blank :

The intervening time between payment of two successive installments is called as ___________.


Fill in the blank :

If payments of an annuity fall due at the beginning of every period, the series is called annuity __________.


State whether the following is True or False :

Payment of every annuity is called an installment.


State whether the following is True or False :

Annuity contingent begins and ends on certain fixed dates.


State whether the following is True or False :

Sinking fund is set aside at the beginning of a business.


Solve the following :

Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.


Solve the following :

A person purchases a television by paying ₹20,000 in cash and promising to pay ₹1,000 at end of every month for the next 2 years. If money is worth 12% p. a. converted monthly, find the cash price of the television. [(1.01)–24 = 0.7875]


Multiple choice questions:

Rental payment for an apartment is an example of ______


State whether the following statement is True or False:

The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n 


In ordinary annuity, payments or receipts occur at ______


For annuity due,

C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513

Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`

= 2,00,000 [1 – 0.7513]

= ₹ `square`


The future amount, A = ₹ 10,00,000

Period, n = 20, r = 5%, (1.025)20 = 1.675

A = `"C"/"I" [(1 + "i")^"n" - 1]`

I = `5/200` = `square` as interest is calculated semi-annually

A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`

10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`

= `"C"/0.025 [1.675 - 1]`

10,00,000 = `("C" xx 0.675)/0.025`

C = ₹ `square`


For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year

∴ Rate of interest per quarter = `square/4` = 4

⇒ r = 4%

⇒ i = `square/100 = 4/100` = 0.04

n = Number of quarters

= 4 × 1

= `square`

⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`

⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`

= `(2000(square))/square [1 - (square)^-4]`

= 50,000`(square)`[1 – 0.8548]

= ₹ 7,550.40


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×