मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following : Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following :

Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.

बेरीज

उत्तर

Given, A = ₹41,000, C = ₹20,000, n = 2 years
We need to find r such that an ordinary annuity of ₹20,000 amounts to ₹41,000 in 2 years.

Since, A = `"C"/"i"[(1 + "i")^"n" - 1]`

41,000 = `"C"/"i"[(1 + "i")^2 - 1]`

41,000 = `(20,000)/"i"[(1 + "i")^2 - 1]`

`(41,000)/(20,000)= (1 + 2"i" + "i"^2 - 1)/"i"`

`(41)/(20) = ("i"^2 + 2"i")/"i"`

`(41)/(20)` = i + 2

`(41)/(20)` – 2 = i

`(41 - 40)/(20)` = i

∴ i = `(1)/(20)` = 0.05

But i = `"r"/(100)`

∴ 0.05 = `"r"/(100)`

∴ r = 5%
The rate of interest is 5%.

shaalaa.com
Annuity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Insurance and Annuity - Miscellaneous Exercise 2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Insurance and Annuity
Miscellaneous Exercise 2 | Q 4.17 | पृष्ठ ३१

संबंधित प्रश्‍न

Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]


Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]


An annuity immediate is to be paid for some years at 12% p.a. The present value of the annuity is ₹ 10,000 and the accumulated value is ₹ 20,000. Find the amount of each annuity payment


For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]


Fill in the blank :

If payments of an annuity fall due at the beginning of every period, the series is called annuity __________.


Fill in the blank :

If payments of an annuity fall due at the end of every period, the series is called annuity __________.


State whether the following is True or False :

Payment of every annuity is called an installment.


State whether the following is True or False :

The present value of an annuity is the sum of the present value of all installments.


Solve the following :

Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]


Solve the following :

Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]


Solve the following :

Some machinery is expected to cost 25% more over its present cost of ₹6,96,000 after 20 years. The scrap value of the machinery will realize ₹1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given (1.05)20= 2.653]


State whether the following statement is True or False:

A sinking fund is a fund established by financial organization


State whether the following statement is True or False:

Annuity contingent begins and ends on certain fixed dates


The present value of an immediate annuity for 4 years at 10% p.a. compounded annually is ₹ 23,400. It’s accumulated value after 4 years would be ₹ ______


If payments of an annuity fall due at the beginning of every period, the series is called annuity ______


The intervening time between payment of two successive installments is called as ______


For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year

∴ Rate of interest per quarter = `square/4` = 4

⇒ r = 4%

⇒ i = `square/100 = 4/100` = 0.04

n = Number of quarters

= 4 × 1

= `square`

⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`

⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`

= `(2000(square))/square [1 - (square)^-4]`

= 50,000`(square)`[1 – 0.8548]

= ₹ 7,550.40


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×