Advertisements
Advertisements
प्रश्न
Solve the following :
A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.
उत्तर
Given, Property value of the shop = ₹5,00,000 Property value of the godown = ₹10,00,000
Since shopkeeper insures shop for 80% and godown for 80%,
∴ Policy value of shop = 80% of its property value
= `(80)/(100) xx 5,00,000`
= ₹4,00,000
Policy vale of godown
= 80% of its property value
= `(80)/(100) xx 10,00,000` = ₹8,00,000
Rate of premium is 8% for the shop as well as for godown.
∴ Amount of premium for the shop
= 8% of its policy value
= `(8)/(100) xx 4,00,000` = ₹32,000
∴ Amount of premium for the shop
= 8% of its policy value
= `(8)/(100) xx 8,00,000` = ₹64,000
∴ Total premium = amount of premium for the shop + amount of premium for the godown
= 32,000 + 64,000
= ₹96,000
∴ Total premium payable by the shopkeeper is ` 96,000.
APPEARS IN
संबंधित प्रश्न
A person wants to create a fund of ₹6,96,150 after 4 years at the time of his retirement. He decides to invest a fixed amount at the end of every year in a bank that offers him interest of 10% p.a. compounded annually. What amount should he invest every year? [Given (1.1)4 = 1.4641]
Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]
For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]
A person sets up a sinking fund in order to have ₹ 1,00,000 after 10 years. What amount should be deposited bi-annually in the account that pays him 5% p.a. compounded semi-annually? [Given (1.025)20 = 1.675]
In an ordinary annuity, payments or receipts occur at ______.
Fill in the blank :
The payment of each single annuity is called __________.
Fill in the blank :
An annuity where payments continue forever is called __________.
State whether the following is True or False :
Annuity contingent begins and ends on certain fixed dates.
State whether the following is True or False :
The future value of an annuity is the accumulated values of all installments.
Solve the following :
A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]
Solve the following :
Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]
Solve the following :
Some machinery is expected to cost 25% more over its present cost of ₹6,96,000 after 20 years. The scrap value of the machinery will realize ₹1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given (1.05)20= 2.653]
State whether the following statement is True or False:
A sinking fund is a fund established by financial organization
State whether the following statement is True or False:
An annuity where payments continue forever is called perpetuity
In ordinary annuity, payments or receipts occur at ______
The intervening time between payment of two successive installments is called as ______
A company decides to set aside a certain sum at the end of each year to create a sinking fund, which should amount to ₹ 4 lakhs in 4 years at 10% p.a. Find the amount to be set aside each year?
[Given (1.1)4 = 1.4641]
For annuity due,
C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513
Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`
= 2,00,000 [1 – 0.7513]
= ₹ `square`
The future amount, A = ₹ 10,00,000
Period, n = 20, r = 5%, (1.025)20 = 1.675
A = `"C"/"I" [(1 + "i")^"n" - 1]`
I = `5/200` = `square` as interest is calculated semi-annually
A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`
10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`
= `"C"/0.025 [1.675 - 1]`
10,00,000 = `("C" xx 0.675)/0.025`
C = ₹ `square`
For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year
∴ Rate of interest per quarter = `square/4` = 4
⇒ r = 4%
⇒ i = `square/100 = 4/100` = 0.04
n = Number of quarters
= 4 × 1
= `square`
⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`
⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`
= `(2000(square))/square [1 - (square)^-4]`
= 50,000`(square)`[1 – 0.8548]
= ₹ 7,550.40