मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following : Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following :

Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]

बेरीज

उत्तर

Given, C = ₹20,000, n = 3 years, r = 10 % p.a.

∴ i  = `"r"/(100) = (10)/(100)` = 0.1

Since, P = `"C"/"i"[1 - (1 + "i")^"n"]`

∴ P= `(20,000)/(0.1)[1 - (1 + 0.1)^-3]`

= 2,00,000[1 – (1.1)–3]
= 2,00,000[1 – 0.7513]
= 2,00,000(0.2487)
= ₹49,740
∴ Present value of an annuity immediate is ₹49,740.

shaalaa.com
Annuity
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Insurance and Annuity - Miscellaneous Exercise 2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 2 Insurance and Annuity
Miscellaneous Exercise 2 | Q 4.19 | पृष्ठ ३१

संबंधित प्रश्‍न

A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]


A lady plans to save for her daughter’s marriage. She wishes to accumulate a sum of ₹4,64,100 at the end of 4 years. What amount should she invest every year if she gets an interest of 10% p.a. compounded annually? [Given (1.1)4 = 1.4641]


Choose the correct alternative :

You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?


Choose the correct alternative :

Amount of money today which is equal to series of payments in future is called


Choose the correct alternative :

Rental payment for an apartment is an example of


______ is a series of constant cash flows over a limited period of time.


Fill in the blank :

The person who receives annuity is called __________.


Fill in the blank :

The intervening time between payment of two successive installments is called as ___________.


Fill in the blank :

If payments of an annuity fall due at the end of every period, the series is called annuity __________.


State whether the following is True or False :

The future value of an annuity is the accumulated values of all installments.


Solve the following :

Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]


Solve the following :

Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.


Solve the following :

A person purchases a television by paying ₹20,000 in cash and promising to pay ₹1,000 at end of every month for the next 2 years. If money is worth 12% p. a. converted monthly, find the cash price of the television. [(1.01)–24 = 0.7875]


Solve the following :

Some machinery is expected to cost 25% more over its present cost of ₹6,96,000 after 20 years. The scrap value of the machinery will realize ₹1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given (1.05)20= 2.653]


Multiple choice questions:

The present value of an immediate annuity of ₹ 10,000 paid each quarter for four quarters at 16% p.a. compounded quarterly is ______


State whether the following statement is True or False:

A sinking fund is a fund established by financial organization


A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?


Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×