English

Multiple choice questions: If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______ - Mathematics and Statistics

Advertisements
Advertisements

Question

Multiple choice questions:

If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______

Options

  • ₹ 4,000

  • ₹ 4,500

  • ₹ 3,500

  • ₹ 4,200

MCQ
Fill in the Blanks

Solution

₹ 4,000

shaalaa.com
Annuity
  Is there an error in this question or solution?
Chapter 2.2: Insurance and Annuity - Q.1

RELATED QUESTIONS

A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]


Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]


Find the present value of an annuity immediate of ₹36,000 p.a. for 3 years at 9% p.a. compounded annually. [Given (1.09)−3 = 0.7722]


Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]


A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.


An annuity immediate is to be paid for some years at 12% p.a. The present value of the annuity is ₹ 10,000 and the accumulated value is ₹ 20,000. Find the amount of each annuity payment


A person sets up a sinking fund in order to have ₹ 1,00,000 after 10 years. What amount should be deposited bi-annually in the account that pays him 5% p.a. compounded semi-annually? [Given (1.025)20 = 1.675]


Choose the correct alternative :

You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?


Fill in the blank :

The payment of each single annuity is called __________.


Fill in the blank :

The intervening time between payment of two successive installments is called as ___________.


Fill in the blank :

An annuity where payments continue forever is called __________.


State whether the following is True or False :

Payment of every annuity is called an installment.


State whether the following is True or False :

The future value of an annuity is the accumulated values of all installments.


State whether the following is True or False :

Sinking fund is set aside at the beginning of a business.


Solve the following :

Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]


Solve the following :

Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]


Solve the following :

After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]


Multiple choice questions:  

In annuity calculations, the interest is usually taken as ______


State whether the following statement is True or False:

The future value of an annuity is the accumulated values of all instalments


State whether the following statement is True or False:

An annuity where payments continue forever is called perpetuity


In ordinary annuity, payments or receipts occur at ______


If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______


An annuity in which each payment is made at the end of period is called ______


A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?


For annuity due,

C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513

Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`

= 2,00,000 [1 – 0.7513]

= ₹ `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×