Advertisements
Advertisements
Question
A company decides to set aside a certain sum at the end of each year to create a sinking fund, which should amount to ₹ 4 lakhs in 4 years at 10% p.a. Find the amount to be set aside each year?
[Given (1.1)4 = 1.4641]
Solution
Given, A = ₹ 4,00,000, n = 4 years, r = 10% p.a, i = `"r"/100 = 10/100` = 0.1
Now, A = `"C"/"i"[(1 + "i")^"n" - 1]`
∴ 4,00,000 = `"C"/0.1[(1 + 0.1)^4 - 1]`
∴ 4,00,000 × 0.1 = C[(1.1)4 − 1]
∴ 40,000 = C[1.4641 − 1]
∴ 40,000 = C(0.4641)
∴ C = `(40,000)/0.4641`
∴ C = ₹ 86,188.32
∴ The amount to be set aside each year is ₹ 2,00,000.
APPEARS IN
RELATED QUESTIONS
Find accumulated value after 1 year of an annuity immediate in which ₹ 10,000 is invested every quarter at 16% p.a. compounded quarterly. [Given (1.04)4 = 1.1699]
Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]
Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]
An annuity immediate is to be paid for some years at 12% p.a. The present value of the annuity is ₹ 10,000 and the accumulated value is ₹ 20,000. Find the amount of each annuity payment
A person sets up a sinking fund in order to have ₹ 1,00,000 after 10 years. What amount should be deposited bi-annually in the account that pays him 5% p.a. compounded semi-annually? [Given (1.025)20 = 1.675]
In an ordinary annuity, payments or receipts occur at ______.
Choose the correct alternative :
A retirement annuity is particularly attractive to someone who has
Fill in the blank :
The intervening time between payment of two successive installments is called as ___________.
Fill in the blank :
If payments of an annuity fall due at the beginning of every period, the series is called annuity __________.
Fill in the blank :
If payments of an annuity fall due at the end of every period, the series is called annuity __________.
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
Solve the following :
Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]
Multiple choice questions:
Rental payment for an apartment is an example of ______
Multiple choice questions:
In annuity calculations, the interest is usually taken as ______
Multiple choice questions:
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year
∴ Rate of interest per quarter = `square/4` = 4
⇒ r = 4%
⇒ i = `square/100 = 4/100` = 0.04
n = Number of quarters
= 4 × 1
= `square`
⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`
⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`
= `(2000(square))/square [1 - (square)^-4]`
= 50,000`(square)`[1 – 0.8548]
= ₹ 7,550.40