Advertisements
Advertisements
प्रश्न
Solve the following :
Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]
उत्तर
Given, C = ₹12,000
Since, the amount is invested at the end of every half year, it is immediate annuity. The period is of two years.
∴ n = 2 x 2 = 4 half years
Rate of interest is 12% p.a.
∴ r = `(12)/(2)` = 6% per half year
i = `"r"/(100) = (6)/(100)` = 0.06
Now, A = `"C"/"i"[(1 + "i")^"n" - 1]`
∴ A = `(12,000)/(0.06)[(1 + 0.06)^4 - 1]`
= 2,00,000 [(1.06)4 – 1]
= 2,00,000 (1.2625 – 1]
= 2,00,000 (0.2625)
∴ A = 52,500
∴ Future value after 2 years is ₹52,500.
APPEARS IN
संबंधित प्रश्न
Find the accumulated (future) value of annuity of ₹ 800 for 3 years at interest rate 8% compounded annually. [Given (1.08)3 = 1.2597]
Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]
A lady plans to save for her daughter’s marriage. She wishes to accumulate a sum of ₹4,64,100 at the end of 4 years. What amount should she invest every year if she gets an interest of 10% p.a. compounded annually? [Given (1.1)4 = 1.4641]
Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.
Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]
Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]
Choose the correct alternative :
Rental payment for an apartment is an example of
Fill in the blank :
The intervening time between payment of two successive installments is called as ___________.
State whether the following is True or False :
Payment of every annuity is called an installment.
State whether the following is True or False :
Annuity contingent begins and ends on certain fixed dates.
State whether the following is True or False :
Sinking fund is set aside at the beginning of a business.
Solve the following :
Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
State whether the following statement is True or False:
The future value of an annuity is the accumulated values of all instalments
The present value of an immediate annuity for 4 years at 10% p.a. compounded annually is ₹ 23,400. It’s accumulated value after 4 years would be ₹ ______
An annuity in which each payment is made at the end of period is called ______
If payments of an annuity fall due at the beginning of every period, the series is called annuity ______
For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year
∴ Rate of interest per quarter = `square/4` = 4
⇒ r = 4%
⇒ i = `square/100 = 4/100` = 0.04
n = Number of quarters
= 4 × 1
= `square`
⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`
⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`
= `(2000(square))/square [1 - (square)^-4]`
= 50,000`(square)`[1 – 0.8548]
= ₹ 7,550.40