हिंदी

Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]

योग

उत्तर

Given C = ₹1,000, n = 3 years, r = 10% p.a.

∴ i = `"r"/(100) = (10)/(100)` = 0.1

Now, A = `("C"(1 + "i"))/"i"[(1 + "i")^"n" - 1]`

∴ A = `(1,000(1 + 0.1))/(0.1)[(1 + 0.1)^3 - 1]`

= `(1,000(1.1))/(0.1)[(1.1)^3 - 1]`

= (1,000)(11)[1.331 – 1]
= 11,000(0.331)
∴ A = 3,641
∴ Accumulated value of annuity due is ₹3,641.

shaalaa.com
Annuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Insurance and Annuity - Exercise 2.2 [पृष्ठ २८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Insurance and Annuity
Exercise 2.2 | Q 1.11 | पृष्ठ २८

संबंधित प्रश्न

Find the accumulated (future) value of annuity of ₹ 800 for 3 years at interest rate 8% compounded annually. [Given (1.08)3 = 1.2597]


A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]


Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]


Find the present value of an annuity immediate of ₹36,000 p.a. for 3 years at 9% p.a. compounded annually. [Given (1.09)−3 = 0.7722]


A lady plans to save for her daughter’s marriage. She wishes to accumulate a sum of ₹4,64,100 at the end of 4 years. What amount should she invest every year if she gets an interest of 10% p.a. compounded annually? [Given (1.1)4 = 1.4641]


In an ordinary annuity, payments or receipts occur at ______. 


Fill in the blank :

The payment of each single annuity is called __________.


Fill in the blank :

An annuity where payments continue forever is called __________.


State whether the following is True or False :

The future value of an annuity is the accumulated values of all installments.


State whether the following is True or False :

Sinking fund is set aside at the beginning of a business.


Solve the following :

Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.


Solve the following :

Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]


Solve the following :

After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]


State whether the following statement is True or False:

The future value of an annuity is the accumulated values of all instalments


The present value of an immediate annuity for 4 years at 10% p.a. compounded annually is ₹ 23,400. It’s accumulated value after 4 years would be ₹ ______


If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______


For annuity due,

C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513

Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`

= 2,00,000 [1 – 0.7513]

= ₹ `square`


For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year

∴ Rate of interest per quarter = `square/4` = 4

⇒ r = 4%

⇒ i = `square/100 = 4/100` = 0.04

n = Number of quarters

= 4 × 1

= `square`

⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`

⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`

= `(2000(square))/square [1 - (square)^-4]`

= 50,000`(square)`[1 – 0.8548]

= ₹ 7,550.40


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×