हिंदी

A person invested ₹5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]

योग

उत्तर

Given, C = ₹ 5,000, r = 10%p.a., n = 4 years

i = `"r"/100 = 10/100` = 0.1

It is an immediate annuity.

Now, A = `"C"/"i"[(1 + "i")^"n" - 1]`

= `(5,000)/(0.1)[1 + 0.1^4 - 1]`

= 50,000[(1.1)4 – 1]

= 50,000[1.4641 – 1]

= 50,000(0.4641)

= 23,205

∴ Amount accumulated after 4 years is ₹ 23,205.

shaalaa.com
Annuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Insurance and Annuity - Exercise 2.2 [पृष्ठ २७]

संबंधित प्रश्न

A person wants to create a fund of ₹6,96,150 after 4 years at the time of his retirement. He decides to invest a fixed amount at the end of every year in a bank that offers him interest of 10% p.a. compounded annually. What amount should he invest every year? [Given (1.1)4 = 1.4641]


A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.


For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]


Fill in the blank :

An annuity where payments continue forever is called __________.


Fill in the blank :

If payments of an annuity fall due at the end of every period, the series is called annuity __________.


State whether the following is True or False :

Annuity contingent begins and ends on certain fixed dates.


State whether the following is True or False :

The present value of an annuity is the sum of the present value of all installments.


State whether the following is True or False :

Sinking fund is set aside at the beginning of a business.


Solve the following :

Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]


Solve the following :

A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]


Solve the following :

Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]


Solve the following :

Some machinery is expected to cost 25% more over its present cost of ₹6,96,000 after 20 years. The scrap value of the machinery will realize ₹1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given (1.05)20= 2.653]


Multiple choice questions:

In an ordinary annuity, payments or receipts occur at ______


Multiple choice questions:  

In annuity calculations, the interest is usually taken as ______


State whether the following statement is True or False:

A sinking fund is a fund established by financial organization


An annuity in which each payment is made at the end of period is called ______


A company decides to set aside a certain sum at the end of each year to create a sinking fund, which should amount to ₹ 4 lakhs in 4 years at 10% p.a. Find the amount to be set aside each year?
[Given (1.1)4 = 1.4641]


For annuity due,

C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513

Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`

= 2,00,000 [1 – 0.7513]

= ₹ `square`


For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year

∴ Rate of interest per quarter = `square/4` = 4

⇒ r = 4%

⇒ i = `square/100 = 4/100` = 0.04

n = Number of quarters

= 4 × 1

= `square`

⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`

⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`

= `(2000(square))/square [1 - (square)^-4]`

= 50,000`(square)`[1 – 0.8548]

= ₹ 7,550.40


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×