Advertisements
Advertisements
प्रश्न
For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year
∴ Rate of interest per quarter = `square/4` = 4
⇒ r = 4%
⇒ i = `square/100 = 4/100` = 0.04
n = Number of quarters
= 4 × 1
= `square`
⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`
⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`
= `(2000(square))/square [1 - (square)^-4]`
= 50,000`(square)`[1 – 0.8548]
= ₹ 7,550.40
उत्तर
For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year
∴ Rate of interest per quarter = `bb(16)/4` = 4
⇒ r = 4%
⇒ i = `bbr/100 = 4/100` = 0.04
n = Number of quarters
= 4 × 1
= 4
⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`
⇒ P' = `(bb(2000)(1 + bb(0.04)))/0.04 [1 - (bb(1) + 0.04)^-bb(4)]`
= `(2000(bb(1.04)))/bb(0.04) [1 - (bb(1.04))^-4]`
= 50,000(1.04)[1 – 0.8548]
= 50,000(1.04)(0.1452)
= ₹ 7,550.40
APPEARS IN
संबंधित प्रश्न
Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]
Find accumulated value after 1 year of an annuity immediate in which ₹ 10,000 is invested every quarter at 16% p.a. compounded quarterly. [Given (1.04)4 = 1.1699]
Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]
A lady plans to save for her daughter’s marriage. She wishes to accumulate a sum of ₹4,64,100 at the end of 4 years. What amount should she invest every year if she gets an interest of 10% p.a. compounded annually? [Given (1.1)4 = 1.4641]
Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.
A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.
Choose the correct alternative :
You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?
Fill in the blank :
The person who receives annuity is called __________.
Fill in the blank :
If payments of an annuity fall due at the end of every period, the series is called annuity __________.
State whether the following is True or False :
Annuity certain begins on a fixed date and ends when an event happens.
State whether the following is True or False :
Annuity contingent begins and ends on certain fixed dates.
State whether the following is True or False :
The future value of an annuity is the accumulated values of all installments.
State whether the following is True or False :
Sinking fund is set aside at the beginning of a business.
Solve the following :
A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.
Solve the following :
Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]
Solve the following :
Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]
Solve the following :
A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]
Solve the following :
After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]
Multiple choice questions:
In an ordinary annuity, payments or receipts occur at ______
Multiple choice questions:
In annuity calculations, the interest is usually taken as ______
Multiple choice questions:
The present value of an immediate annuity of ₹ 10,000 paid each quarter for four quarters at 16% p.a. compounded quarterly is ______
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
In ordinary annuity, payments or receipts occur at ______
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
The intervening time between payment of two successive installments is called as ______
Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]
The future amount, A = ₹ 10,00,000
Period, n = 20, r = 5%, (1.025)20 = 1.675
A = `"C"/"I" [(1 + "i")^"n" - 1]`
I = `5/200` = `square` as interest is calculated semi-annually
A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`
10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`
= `"C"/0.025 [1.675 - 1]`
10,00,000 = `("C" xx 0.675)/0.025`
C = ₹ `square`