हिंदी

The intervening time between payment of two successive installments is called as ______ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The intervening time between payment of two successive installments is called as ______

रिक्त स्थान भरें

उत्तर

payment period

shaalaa.com
Annuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.2: Insurance and Annuity - Q.3

संबंधित प्रश्न

Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]


Find the number of years for which an annuity of ₹500 is paid at the end of every year, if the accumulated amount works out to be ₹1,655 when interest is compounded annually at 10% p.a.


A person sets up a sinking fund in order to have ₹ 1,00,000 after 10 years. What amount should be deposited bi-annually in the account that pays him 5% p.a. compounded semi-annually? [Given (1.025)20 = 1.675]


Choose the correct alternative :

You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?


In an ordinary annuity, payments or receipts occur at ______. 


______ is a series of constant cash flows over a limited period of time.


Fill in the blank :

The payment of each single annuity is called __________.


Fill in the blank :

An annuity where payments continue forever is called __________.


Fill in the blank :

If payments of an annuity fall due at the end of every period, the series is called annuity __________.


State whether the following is True or False :

The present value of an annuity is the sum of the present value of all installments.


State whether the following is True or False :

Sinking fund is set aside at the beginning of a business.


Solve the following :

Find the amount a company should set aside at the end of every year if it wants to buy a machine expected to cost ₹1,00,000 at the end of 4 years and interest rate is 5% p. a. compounded annually. [(1.05)4 = 1.21550625]


Solve the following :

Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]


Solve the following :

Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.


Solve the following :

After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]


Solve the following :

Some machinery is expected to cost 25% more over its present cost of ₹6,96,000 after 20 years. The scrap value of the machinery will realize ₹1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given (1.05)20= 2.653]


Multiple choice questions:  

In annuity calculations, the interest is usually taken as ______


In ordinary annuity, payments or receipts occur at ______


The future amount, A = ₹ 10,00,000

Period, n = 20, r = 5%, (1.025)20 = 1.675

A = `"C"/"I" [(1 + "i")^"n" - 1]`

I = `5/200` = `square` as interest is calculated semi-annually

A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`

10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`

= `"C"/0.025 [1.675 - 1]`

10,00,000 = `("C" xx 0.675)/0.025`

C = ₹ `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×