हिंदी

______ is a series of constant cash flows over a limited period of time. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

______ is a series of constant cash flows over a limited period of time.

विकल्प

  • Perpetuity

  • Annuity

  • Present value

  • Future value

MCQ
रिक्त स्थान भरें

उत्तर

Annuity is a series of constant cashflows over a limited period of time.

shaalaa.com
Annuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Insurance and Annuity - Miscellaneous Exercise 2 [पृष्ठ २९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Insurance and Annuity
Miscellaneous Exercise 2 | Q 1.09 | पृष्ठ २९

संबंधित प्रश्न

A lady plans to save for her daughter’s marriage. She wishes to accumulate a sum of ₹4,64,100 at the end of 4 years. What amount should she invest every year if she gets an interest of 10% p.a. compounded annually? [Given (1.1)4 = 1.4641]


A person wants to create a fund of ₹6,96,150 after 4 years at the time of his retirement. He decides to invest a fixed amount at the end of every year in a bank that offers him interest of 10% p.a. compounded annually. What amount should he invest every year? [Given (1.1)4 = 1.4641]


Find the number of years for which an annuity of ₹500 is paid at the end of every year, if the accumulated amount works out to be ₹1,655 when interest is compounded annually at 10% p.a.


A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.


Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]


An annuity immediate is to be paid for some years at 12% p.a. The present value of the annuity is ₹ 10,000 and the accumulated value is ₹ 20,000. Find the amount of each annuity payment


Choose the correct alternative :

You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?


In an ordinary annuity, payments or receipts occur at ______. 


State whether the following is True or False :

Annuity contingent begins and ends on certain fixed dates.


State whether the following is True or False :

The future value of an annuity is the accumulated values of all installments.


Solve the following :

Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]


Solve the following :

Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.


Solve the following :

A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]


Solve the following :

After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]


Multiple choice questions:  

In annuity calculations, the interest is usually taken as ______


Multiple choice questions:

The present value of an immediate annuity of ₹ 10,000 paid each quarter for four quarters at 16% p.a. compounded quarterly is ______


State whether the following statement is True or False:

The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n 


State whether the following statement is True or False:

Annuity contingent begins and ends on certain fixed dates


In ordinary annuity, payments or receipts occur at ______


If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______


An annuity in which each payment is made at the end of period is called ______


The intervening time between payment of two successive installments is called as ______


For annuity due,

C = ₹ 20,000, n = 3, I = 0.1, (1.1)–3 = 0.7513

Therefore, P = `square/0.1 xx [1 - (1 + 0.1)^square]`

= 2,00,000 [1 – 0.7513]

= ₹ `square`


The future amount, A = ₹ 10,00,000

Period, n = 20, r = 5%, (1.025)20 = 1.675

A = `"C"/"I" [(1 + "i")^"n" - 1]`

I = `5/200` = `square` as interest is calculated semi-annually

A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`

10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`

= `"C"/0.025 [1.675 - 1]`

10,00,000 = `("C" xx 0.675)/0.025`

C = ₹ `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×