Advertisements
Advertisements
प्रश्न
Choose the correct answer from the given four options :
If the equation {k + 1)x² – 2(k – 1)x + 1 = 0 has equal roots, then the values of k are
विकल्प
1, 3
0, 3
0, 1
0, 1
उत्तर
(k + 1)x² – 2(k – 1)x + 1 = 0
Here, a = k + 1, b = -2(k – 1), c = 1
∴ b2 – 4ac
= [–2(k –- 1)]2 – 4(k + 1)(1)
= 4(k2 – 2k + 1) – 4k - 4
= 4k2 – 8k + 4 – 4k – 4
= 4k2 – 12k
∵ Roots are equal.
∴ b2 – 4ac = 0
∴ 4k2 – 12k = 0
4k(k – 3) = 0
⇒ 4k(k – 3) = 0
⇒ k(k – 3) = 0
Either k = 0
or
k – 3 = 0,
then k = 3
k = 0, 3.
APPEARS IN
संबंधित प्रश्न
Solve for x using the quadratic formula. Write your answer corrected to two significant figures. (x - 1)2 - 3x + 4 = 0
Solve the following quadratic equation using formula method only
5x2 - 19x + 17 = 0
Write the discriminant of the quadratic equation (x + 5)2 = 2 (5x − 3).
Without actually determining the roots comment upon the nature of the roots of each of the following equations:
3x2 + 2x - 1 = 0
If – 5 is a root of the quadratic equation 2x2 + px – 15 = 0 and the quadratic equation p(x2 + x) + k = 0 has equal roots, find the value of k.
If x2 (a2 + b2) + 2x (ac + bd) + c2 +d2 = 0 has no real roots, then:
Find the roots of the quadratic equation by using the quadratic formula in the following:
–3x2 + 5x + 12 = 0
Find the roots of the quadratic equation by using the quadratic formula in the following:
`x^2 - 3sqrt(5)x + 10 = 0`
If α and β are the distinct roots of the equation `x^2 + (3)^(1/4)x + 3^(1/2)` = 0, then the value of α96(α12 – 1) + β96(β12 – 1) is equal to ______.
If one root of equation (p – 3) x2 + x + p = 0 is 2, the value of p is ______.