Advertisements
Advertisements
प्रश्न
Choose the correct answer from the given four options :
If the equation {k + 1)x² – 2(k – 1)x + 1 = 0 has equal roots, then the values of k are
पर्याय
1, 3
0, 3
0, 1
0, 1
उत्तर
(k + 1)x² – 2(k – 1)x + 1 = 0
Here, a = k + 1, b = -2(k – 1), c = 1
∴ b2 – 4ac
= [–2(k –- 1)]2 – 4(k + 1)(1)
= 4(k2 – 2k + 1) – 4k - 4
= 4k2 – 8k + 4 – 4k – 4
= 4k2 – 12k
∵ Roots are equal.
∴ b2 – 4ac = 0
∴ 4k2 – 12k = 0
4k(k – 3) = 0
⇒ 4k(k – 3) = 0
⇒ k(k – 3) = 0
Either k = 0
or
k – 3 = 0,
then k = 3
k = 0, 3.
APPEARS IN
संबंधित प्रश्न
Find the values of k for the following quadratic equation, so that they have two equal roots.
2x2 + kx + 3 = 0
If ad ≠ bc, then prove that the equation (a2 + b2) x2 + 2 (ac + bd) x + (c2 + d2) = 0 has no real roots.
Prove that both the roots of the equation (x - a)(x - b) +(x - b)(x - c)+ (x - c)(x - a) = 0 are real but they are equal only when a = b = c.
Without actually determining the roots comment upon the nature of the roots of each of the following equations:
9a2b2x2 - 48abc + 64c2d2 = 0, a ≠ 0, b ≠ 0
Determine whether the given quadratic equations have equal roots and if so, find the roots:
x2 + 2x + 4 = 0
Without solving the following quadratic equation, find the value of ‘p’ for which the given equations have real and equal roots: px2 – 4x + 3 = 0
Find the value (s) of k for which each of the following quadratic equation has equal roots : (k – 4) x2 + 2(k – 4) x + 4 = 0
Find the value(s) of p for which the quadratic equation (2p + 1)x2 – (7p + 2)x + (7p – 3) = 0 has equal roots. Also find these roots.
A natural number, when increased by 12, equals 160 times its reciprocal. Find the number.
If x2 (a2 + b2) + 2x (ac + bd) + c2 +d2 = 0 has no real roots, then: