Advertisements
Advertisements
Question
Choose the correct answer from the given four options :
If the equation {k + 1)x² – 2(k – 1)x + 1 = 0 has equal roots, then the values of k are
Options
1, 3
0, 3
0, 1
0, 1
Solution
(k + 1)x² – 2(k – 1)x + 1 = 0
Here, a = k + 1, b = -2(k – 1), c = 1
∴ b2 – 4ac
= [–2(k –- 1)]2 – 4(k + 1)(1)
= 4(k2 – 2k + 1) – 4k - 4
= 4k2 – 8k + 4 – 4k – 4
= 4k2 – 12k
∵ Roots are equal.
∴ b2 – 4ac = 0
∴ 4k2 – 12k = 0
4k(k – 3) = 0
⇒ 4k(k – 3) = 0
⇒ k(k – 3) = 0
Either k = 0
or
k – 3 = 0,
then k = 3
k = 0, 3.
APPEARS IN
RELATED QUESTIONS
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
2x2 - 6x + 3 = 0
Determine the nature of the roots of the following quadratic equation:
(b + c)x2 - (a + b + c)x + a = 0
Find the values of k for which the roots are real and equal in each of the following equation:
(4 - k)x2 + (2k + 4)x + 8k + 1 = 0
For what value of k, (4 - k)x2 + (2k + 4)x + (8k + 1) = 0, is a perfect square.
Find the roots of the equation .`1/(2x-3)+1/(x+5)=1,x≠3/2,5`
If the ratio of the roots of the equation
lx2 + nx + n = 0 is p: q, Prove that
`sqrt(p/q) + sqrt(q/p) + sqrt(n/l) = 0.`
Discuss the nature of the roots of the following equation: `x^2 - (1)/(2)x - 4` = 0
If a = 1, b = 4, c = – 5, then find the value of b2 – 4ac
Compare the quadratic equation `x^2 + 9sqrt(3)x + 24 = 0` to ax2 + bx + c = 0 and find the value of discriminant and hence write the nature of the roots.
Solve for x: `5/2 x^2 + 2/5 = 1 - 2x`.