Advertisements
Advertisements
Questions
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
2x2 - 6x + 3 = 0
Determine the nature of the roots of the following quadratic equation:
2x2 - 6x + 3 = 0
Solution
2x2 - 6x + 3 = 0
Comparing the given quadratic equation with ax2 + bx + c = 0, we get
a = 2, b = -6, c = 3
Discriminant = b2 - 4ac
= (-6)2 - 4 (2) (3)
= 36 - 24
= 12
As b2 - 4ac > 0,
Therefore, distinct real roots exist for this equation
x = `(-b+-b^2-4ac)/(2a)`
= `(-(-6)+-sqrt((-6)^2-4(2)(3)))/(2(2))`
= `(6+-sqrt12)/4`
= `(6+-2sqrt3)/4`
= `(3+-sqrt3)/2`
Therefore, the root are `x=(3+sqrt3)/2 and x = (3-sqrt3)/2`
APPEARS IN
RELATED QUESTIONS
Solve for x: `1/(x+1)+2/(x+2)=4/(x+4), `x ≠ -1, -2, -3
Solve the quadratic equation 2x2 + ax − a2 = 0 for x.
Solve for x using the quadratic formula. Write your answer corrected to two significant figures. (x - 1)2 - 3x + 4 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
4x2 - 3kx + 1 = 0
In the following determine the set of values of k for which the given quadratic equation has real roots:
2x2 + kx + 2 = 0
Find the values of k for which the given quadratic equation has real and distinct roots:
x2 - kx + 9 = 0
If p, q are real and p ≠ q, then show that the roots of the equation (p − q) x2 + 5(p + q) x− 2(p − q) = 0 are real and unequal.
If 1 is a root of the quadratic equation 3x2 + ax – 2 = 0 and the quadratic equation a(x2 + 6x) – b = 0 has equal roots, find the value of b ?
Find the value of the discriminant in the following quadratic equation:
2x2 - 3x + 1 = O
Solve the following quadratic equation using formula method only
`3"x"^2 - 5"x" + 25/12 = 0 `
Solve the following quadratic equation using formula method only
`3"x"^2 +2 sqrt 5 "x" -5 = 0`
If a = 1, b = 8 and c = 15, then find the value of `"b"^2 - 4"ac"`
If the roots of px2 + qx + 2 = 0 are reciprocal of each other, then:
If the equation x2 – (2 + m)x + (–m2 – 4m – 4) = 0 has coincident roots, then:
If x2 (a2 + b2) + 2x (ac + bd) + c2 +d2 = 0 has no real roots, then:
State whether the following quadratic equation have two distinct real roots. Justify your answer.
2x2 + x – 1 = 0
Does there exist a quadratic equation whose coefficients are rational but both of its roots are irrational? Justify your answer.
State whether the following quadratic equation have two distinct real roots. Justify your answer.
`(x - sqrt(2))^2 - 2(x + 1) = 0`
State whether the following quadratic equation have two distinct real roots. Justify your answer.
`sqrt(2)x^2 - 3/sqrt(2)x + 1/sqrt(2) = 0`
Find the roots of the quadratic equation by using the quadratic formula in the following:
`x^2 - 3sqrt(5)x + 10 = 0`