Advertisements
Advertisements
प्रश्न
Decide whether the following sequence is an A.P., if so find the 20th term of the progression:
–12, –5, 2, 9, 16, 23, 30, ..............
उत्तर
Here a = t1 = first term = – 12, t2 = – 5,
Common difference = d = t2 – t1
d = – 5 – (– 12)
= – 5 + 12
∴ d = 7
We know that, tn = a + (n – 1)d
Here, n = 20, a = – 12, d = 7
∴ t20 = – 12 + (20 – 1)7
= – 12 + 133
t20 = 121
∴ 20th term of the progression is 121.
APPEARS IN
संबंधित प्रश्न
Find the term t15 of an A.P. : 4, 9, 14, …………..
If the 9th term of an A.P. is zero, then prove that 29th term is double of 19th term.
Find the sum of the following arithmetic series:
34 + 32 + 30 +...+10
Find the sum of the following arithmetic series:
(-5)+(-8)+(-11)+...+(-230)
Given Arithmetic Progression 12, 16, 20, 24, . . . Find the 24th term of this progression.
Select the correct alternative and write it.
What is the sum of first n natural numbers ?
Select the correct alternative and write it.
If a share is at premium, then -
If the sum of first n terms of an AP is n2, then find its 10th term.
How many multiples of 4 lie between 10 and 205?
Choose the correct alternative answer for the following sub-question
If the third term and fifth term of an A.P. are 13 and 25 respectively, find its 7th term
Find tn if a = 20 आणि d = 3
Find t5 if a = 3 आणि d = −3
How many two-digit numbers are divisible by 5?
Activity :- Two-digit numbers divisible by 5 are, 10, 15, 20, ......, 95.
Here, d = 5, therefore this sequence is an A.P.
Here, a = 10, d = 5, tn = 95, n = ?
tn = a + (n − 1) `square`
`square` = 10 + (n – 1) × 5
`square` = (n – 1) × 5
`square` = (n – 1)
Therefore n = `square`
There are `square` two-digit numbers divisible by 5
Decide whether 301 is term of given sequence 5, 11, 17, 23, .....
Activity :- Here, d = `square`, therefore this sequence is an A.P.
a = 5, d = `square`
Let nth term of this A.P. be 301
tn = a + (n – 1) `square`
301 = 5 + (n – 1) × `square`
301 = 6n – 1
n = `302/6` = `square`
But n is not positive integer.
Therefore, 301 is `square` the term of sequence 5, 11, 17, 23, ......
Find a and b so that the numbers a, 7, b, 23 are in A.P.
Write the next two terms of the A.P.: `sqrt(27), sqrt(48), sqrt(75)`......