Advertisements
Advertisements
प्रश्न
Define Correlation.
उत्तर
Correlation is a statistical device that helps to analyze the covariation of two or more variables. Sir Francis Galton, is responsible for the calculation of the correlation coefficient.
APPEARS IN
संबंधित प्रश्न
Calculate the correlation coefficient for the following data.
X | 5 | 10 | 5 | 11 | 12 | 4 | 3 | 2 | 7 | 1 |
Y | 1 | 6 | 2 | 8 | 5 | 1 | 4 | 6 | 5 | 2 |
Find the coefficient of correlation for the following:
Cost (₹) | 14 | 19 | 24 | 21 | 26 | 22 | 15 | 20 | 19 |
Sales (₹) | 31 | 36 | 48 | 37 | 50 | 45 | 33 | 41 | 39 |
Calculate the correlation coefficient for the following data.
X | 25 | 18 | 21 | 24 | 27 | 30 | 36 | 39 | 42 | 48 |
Y | 26 | 35 | 48 | 28 | 20 | 36 | 25 | 40 | 43 | 39 |
Find the coefficient of correlation for the following:
X | 78 | 89 | 96 | 69 | 59 | 79 | 68 | 62 |
Y | 121 | 72 | 88 | 60 | 81 | 87 | 123 | 92 |
If the values of two variables move in the opposite direction then the correlation is said to be
Correlation co-efficient lies between
The correlation coefficient from the following data N = 25, ∑X = 125, ∑Y = 100, ∑X2 = 650, ∑Y2 = 436, ∑XY = 520
From the following data, N = 11, ∑X = 117, ∑Y = 260, ∑X2 = 1313, ∑Y2 = 6580, ∑XY = 2827 the correlation coefficient is
The correlation coefficient is
The variable whose value is influenced (or) is to be predicted is called
Scatter diagram of the variate values (X, Y) give the idea about
If two variables moves in decreasing direction then the correlation is
Calculate the coefficient of correlation from the following data:
∑X = 50, ∑Y = – 30, ∑X2 = 290, ∑Y2 = 300, ∑XY = – 115, N = 10
Calculate the correlation coefficient from the data given below:
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Y | 9 | 8 | 10 | 12 | 11 | 13 | 14 | 16 | 15 |
A measure of the strength of the linear relationship that exists between two variables is called:
If the points on the scatter diagram indicate that as one variable increases the other variable tends to decrease the value of r will be:
State and explain the different kinds of Correlation.
Calculate the Karl Pearson Correlation Co-efficient for the following data:
Demand for Product X : | 23 | 27 | 28 | 29 |
30 |
31 | 33 | 35 | 36 | 39 |
Sale of Product Y: | 18 | 22 | 23 | 24 | 25 | 26 | 28 | 29 | 30 | 32 |