हिंदी

Depict the Orientation of the Dipole in (I) Stable, (Ii) Unstable Equilibrium in a Uniform Electric Field. - Physics

Advertisements
Advertisements

प्रश्न

Depict the orientation of the dipole in (i) stable, (ii) unstable equilibrium in a uniform electric field.

उत्तर

Depicting the orientation of the dipole in

(i) stable equilibrium in a uniform electric field

Net force is zero in this case as qE - qE = 0
Net torque = pEsinθ as θ = 0°

(ii) unstable equilibrium in a uniform electric field.


Net force is negative in this case as - qE - qE = -2qE
Net torque = pEsinθ as θ = 180°

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Derive the expression for the electric potential due to an electric dipole at a point on its axial line.


A short electric dipole (which consists of two point charges, +q and -q) is placed at the centre 0 and inside a large cube (ABCDEFGH) of length L, as shown in Figure 1. The electric flux, emanating through the cube is:

a) `q"/"4piin_9L`

b) zero

c) `q"/"2piin_0L`

d) `q"/"3piin_0L`


(a) Define torque acting on a dipole of dipole moment \[\vec{p}\] placed in a uniform electric field \[\vec{E}\] Express it in the vector from and point out the direction along which it acts. 

Express it in the vector from and point out the direction along which it acts.
(b) What happens if the field is non-uniform?
(c) What would happen if the external field
\[\vec{E}\]  is increasing (i) parallel to \[\vec{p}\] and (ii) anti-parallel to \[\vec{p}\] ?

It is said that the separation between the two charges forming an electric dipole should be small. In comparison to what should this separation be small?


An electric dipole is placed at the centre of a sphere. Mark the correct options.
(a) The flux of the electric field through the sphere is zero.
(b) The electric field is zero at every point of the sphere.
(c) The electric field is not zero anywhere on the sphere.
(d) The electric field is zero on a circle on the sphere.


Two particles A and B, of opposite charges 2.0 × 10−6 C and −2.0 × 10−6 C, are placed at a separation of 1.0 cm. Calculate the electric field at a point on the perpendicular bisector of the dipole and 1.0 m away from the centre. 


Two charges + 3.2 x 10-19 C and --3.2 x 10-19 C placed at 2.4 Å apart to form an electric dipole. lt is placed in a uniform electric field of intensity 4 x 105 volt/m. The electric dipole moment is ______.


A metal sphere of radius 1 cm is given a charge of 3.14 µC. Find the electric intensity at a distance of 1 m from the centre of sphere.

`[epsilon_0 = 8.85 xx 10^-12  "F"//m]`


A dipole is placed in an electric field as shown. In which direction will it move? 


Two charges –q each are fixed separated by distance 2d. A third charge q of mass m placed at the mid-point is displaced slightly by x(x << d) perpendicular to the line joining the two fixed charged as shown in figure. Show that q will perform simple harmonic oscillation of time period.

`T = [(8pi^3 ε_0 md^3)/q^2]^(1/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×