Advertisements
Advertisements
प्रश्न
Derive an expression for the binding energy of a body at rest on the Earth’s surface of a satellite.
उत्तर
- Let,
M = mass of the Earth
m = mass of the satellite
R = radius of the Earth. - Since the satellite is at rest on the Earth, v = 0
∴ Kinetic energy of satellite,
K.E. = `1/2 "mv"^2 = 0` - Gravitational potential at the Earth’s surface = `- "GM"/"R"`
∴ The potential energy of a satellite = Gravitational potential × mass of the satellite
= - `"GMm"/"R"` - Total energy of satellite = T.E = P.E + K.E
∴ T.E. = - `"GMm"/"R" + 0 = - "GMm"/"R"` - Negative sign in the energy indicates that the satellite is bound to the Earth, due to gravitational force of attraction.
- For the satellite to be free form Earth’s gravitational influence, its total energy should become positive. That energy is the binding energy of the satellite at rest on the surface of the Earth.
∴ B.E. = `"GMm"/"R"`
APPEARS IN
संबंधित प्रश्न
Suppose there existed a planet that went around the sun twice as fast as the earth.What would be its orbital size as compared to that of the earth?
A nut becomes loose and gets detached from a satellite revolving around the earth. Will it land on the earth? If yes, where will it land? If no, how can an astronaut make it land on the earth?
A satellite of mass 1000 kg is supposed to orbit the earth at a height of 2000 km above the earth's surface. Find (a) its speed in the orbit, (b) is kinetic energy, (c) the potential energy of the earth-satellite system and (d) its time period. Mass of the earth = 6 × 1024kg.
What is the true weight of an object in a geostationary satellite that weighed exactly 10.0 N at the north pole?
Find the minimum colatitude which can directly receive a signal from a geostationary satellite.
State the conditions for various possible orbits of satellite depending upon the horizontal/tangential speed of projection.
Derive an expression for the critical velocity of a satellite.
Answer the following question in detail.
State any four applications of a communication satellite.
Answer the following question in detail.
Why an astronaut in an orbiting satellite has a feeling of weightlessness?
Answer the following question in detail.
Obtain an expression for the binding energy of a satellite revolving around the Earth at a certain altitude.
Answer the following question in detail.
Obtain an expression for the critical velocity of an orbiting satellite. On what factors does it depend?
Describe how an artificial satellite using a two-stage rocket is launched in an orbit around the Earth.
Solve the following problem.
Calculate the value of the universal gravitational constant from the given data. Mass of the Earth = 6 × 1024 kg, Radius of the Earth = 6400 km, and the acceleration due to gravity on the surface = 9.8 m/s2.
Solve the following problem.
What is the gravitational potential due to the Earth at a point which is at a height of 2RE above the surface of the Earth?
(Mass of the Earth is 6 × 1024 kg, radius of the Earth = 6400 km and G = 6.67 × 10–11 N m2 kg–2)
If a body weighing 40 kg is taken inside the earth to a depth to radius of the earth, then `1/8`th the weight of the body at that point is ______.
Two satellites A and B go round a planet P in circular orbits having radii 4R and R respectively. If the speed of the satellite A is 3v, the speed of satellite B is ____________.
Reason of weightlessness in a satellite is ____________.
If a body weighing 40 kg-wt is taken inside the earth to a depth to `1/2` th radius of the earth, then the weight of the body at that point is ____________.
The ratio of energy required to raise a satellite to a height `(2R)/3` above earth's surface to that required to put it into the orbit at the same height is ______.
R = radius of the earth
A satellite of mass 'm', revolving round the earth of radius 'r' has kinetic energy (E). Its angular momentum is ______.
A satellite of mass 'm' is revolving around the earth of mass 'M' in an orbit of radius 'r' with constant angular velocity 'ω'. The angular momentum of the satellite is ______.
(G =gravitational constant)
In the case of earth, mean radius is 'R', acceleration due to gravity on the surface is 'g', angular speed about its own axis is 'ω'. What will be the radius of the orbit of a geostationary satellite?
A satellite is to revolve round the earth in a circle of radius 9600 km. The speed with which this satellite be projected into an orbit, will be ______.
A satellite is revolving in a circular orbit around the earth has total energy 'E'. Its potential energy in that orbit is ______.
A geostationary satellite is orbiting the earth at a height 6R above the surface of the earth, where R is the radius of the earth. This time period of another satellite at a height (2.5 R) from the surface of the earth is ______.
An artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of escape velocity from the earth. If the satellite is stopped in its orbit and allowed to fall freely onto the earth, the speed with which it hits the surface ______ km/s.
[g = 9.8 ms-2 and Re = 6400 km]
A satellite is revolving in a circular orbit at a height 'h' above the surface of the earth of radius 'R'. The speed of the satellite in its orbit is one-fourth the escape velocity from the surface of the earth. The relation between 'h' and 'R' is ______.