Advertisements
Advertisements
प्रश्न
Answer the following question in detail.
Obtain an expression for the critical velocity of an orbiting satellite. On what factors does it depend?
उत्तर
The expression for critical velocity:
- Consider a satellite of mass m revolving round the Earth at height h above its surface. Let M be the mass of the Earth and R be its radius.
- If the satellite is moving in a circular orbit of radius (R + h) = r, its speed must be equal to the magnitude of critical velocity vc.
- The centripetal force necessary for the circular motion of a satellite is provided by the gravitational force exerted by the satellite on the Earth.
∴ Centripetal force = Gravitational force
∴ `("mv"_"c"^2)/"r" = "GMm"/"r"^2`
∴ `"v"_"c"^2 = "GM"/"r"`
∴ `"v"_"c" = sqrt("GM"/"r")`
∴ `"v"_"c" = sqrt("GM"/("R + h")) = sqrt("g"_"h" ("R + h"))`
This is the expression for critical speed at the orbit of radius (R + h). - The critical speed of a satellite is independent of the mass of the satellite. It depends upon the mass of the Earth and the height at which the satellite is the revolving or gravitational acceleration at that altitude.
APPEARS IN
संबंधित प्रश्न
A nut becomes loose and gets detached from a satellite revolving around the earth. Will it land on the earth? If yes, where will it land? If no, how can an astronaut make it land on the earth?
Two satellites going in equatorial plane have almost same radii. As seen from the earth one moves from east one to west and the other from west to east. Will they have the same time period as seen from the earth? If not which one will have less time period?
A body stretches a spring by a particular length at the earth's surface at the equator. At what height above the south pole will it stretch the same spring by the same length? Assume the earth to be spherical.
A pendulum having a bob of mass m is hanging in a ship sailing along the equator from east to west. When the ship is stationary with respect to water the tension in the string is T0. (a) Find the speed of the ship due to rotation of the earth about its axis. (b) Find the difference between T0 and the earth's attraction on the bob. (c) If the ship sails at speed v, what is the tension in the string? Angular speed of earth's rotation is ω and radius of the earth is R.
Answer the following question.
Why is a minimum two-stage rocket necessary for launching of a satellite?
Derive an expression for the critical velocity of a satellite.
Answer the following question in detail.
Two satellites A and B are revolving round a planet. Their periods of revolution are 1 hour and 8 hour respectively. The radius of orbit of satellite B is 4 × 104 km. Find radius of orbit of satellite A.
A planet has mass 6.4 × 1024 kg and radius 3.4 × 106 m. Calculate the energy required to remove an object of mass 800 kg from the surface of the planet to infinity.
Solve the following problem.
Calculate the value of the universal gravitational constant from the given data. Mass of the Earth = 6 × 1024 kg, Radius of the Earth = 6400 km, and the acceleration due to gravity on the surface = 9.8 m/s2.
The kinetic energy of a revolving satellite (mass m) at a height equal to thrice the radius of the earth (R) is ______.
What is the minimum energy required to launch a satellite of mass 'm' from the surface of the earth of mass 'M' and radius 'R' at an altitude 2R?
An aircraft is moving with uniform velocity 150 m/s in the space. If all the forces acting on it are balanced, then it will ______.
Two satellites A and B go round a planet P in circular orbits having radii 4R and R respectively. If the speed of the satellite A is 3v, the speed of satellite B is ____________.
Reason of weightlessness in a satellite is ____________.
A geostationary satellite is orbiting the earth at the height of 6R above the surface of earth. R being radius of earth. The time period of another satellite at a height of 2.5 R from the surface of earth is ____________.
The ratio of energy required to raise a satellite to a height `(2R)/3` above earth's surface to that required to put it into the orbit at the same height is ______.
R = radius of the earth
A satellite of mass 'm', revolving round the earth of radius 'r' has kinetic energy (E). Its angular momentum is ______.
In the case of earth, mean radius is 'R', acceleration due to gravity on the surface is 'g', angular speed about its own axis is 'ω'. What will be the radius of the orbit of a geostationary satellite?
A satellite is to revolve round the earth in a circle of radius 9600 km. The speed with which this satellite be projected into an orbit, will be ______.
A satellite is revolving in a circular orbit around the earth has total energy 'E'. Its potential energy in that orbit is ______.
Satellites orbiting the earth have finite life and sometimes debris of satellites fall to the earth. This is because ______.
A satellite is revolving in a circular orbit at a height 'h' above the surface of the earth of radius 'R'. The speed of the satellite in its orbit is one-fourth the escape velocity from the surface of the earth. The relation between 'h' and 'R' is ______.
Two satellites are orbiting around the earth in circular orbits of same radius. One of them is 10 times greater in mass than the other. Their period of revolutions are in the ratio ______.