Advertisements
Advertisements
Question
Answer the following question in detail.
Obtain an expression for the critical velocity of an orbiting satellite. On what factors does it depend?
Solution
The expression for critical velocity:
- Consider a satellite of mass m revolving round the Earth at height h above its surface. Let M be the mass of the Earth and R be its radius.
- If the satellite is moving in a circular orbit of radius (R + h) = r, its speed must be equal to the magnitude of critical velocity vc.
- The centripetal force necessary for the circular motion of a satellite is provided by the gravitational force exerted by the satellite on the Earth.
∴ Centripetal force = Gravitational force
∴ `("mv"_"c"^2)/"r" = "GMm"/"r"^2`
∴ `"v"_"c"^2 = "GM"/"r"`
∴ `"v"_"c" = sqrt("GM"/"r")`
∴ `"v"_"c" = sqrt("GM"/("R + h")) = sqrt("g"_"h" ("R + h"))`
This is the expression for critical speed at the orbit of radius (R + h). - The critical speed of a satellite is independent of the mass of the satellite. It depends upon the mass of the Earth and the height at which the satellite is the revolving or gravitational acceleration at that altitude.
APPEARS IN
RELATED QUESTIONS
Suppose there existed a planet that went around the sun twice as fast as the earth.What would be its orbital size as compared to that of the earth?
Consider earth satellites in circular orbits. A geostationary satellite must be at a height of about 36000 km from the earth's surface. Will any satellite moving at this height be a geostationary satellite? Will any satellite moving at this height have a time period of 24 hours?
Two satellites going in equatorial plane have almost same radii. As seen from the earth one moves from east one to west and the other from west to east. Will they have the same time period as seen from the earth? If not which one will have less time period?
A satellite is orbiting the earth close to its surface. A particle is to be projected from the satellite to just escape from the earth. The escape speed from the earth is ve. Its speed with respect to the satellite
At what rate should the earth rotate so that the apparent g at the equator becomes zero? What will be the length of the day in this situation?
A pendulum having a bob of mass m is hanging in a ship sailing along the equator from east to west. When the ship is stationary with respect to water the tension in the string is T0. (a) Find the speed of the ship due to rotation of the earth about its axis. (b) Find the difference between T0 and the earth's attraction on the bob. (c) If the ship sails at speed v, what is the tension in the string? Angular speed of earth's rotation is ω and radius of the earth is R.
A Mars satellite moving in an orbit of radius 9.4 × 103 km takes 27540 s to complete one revolution. Calculate the mass of Mars.
A satellite of mass 1000 kg is supposed to orbit the earth at a height of 2000 km above the earth's surface. Find (a) its speed in the orbit, (b) is kinetic energy, (c) the potential energy of the earth-satellite system and (d) its time period. Mass of the earth = 6 × 1024kg.
What is the true weight of an object in a geostationary satellite that weighed exactly 10.0 N at the north pole?
The radius of a planet is R1 and a satellite revolves round it in a circle of radius R2. The time period of revolution is T. Find the acceleration due to the gravitation of the planet at its surface.
Choose the correct option.
The binding energy of a satellite revolving around the planet in a circular orbit is 3 × 109 J. It's kinetic energy is ______.
Answer the following question.
Why is a minimum two-stage rocket necessary for launching of a satellite?
State the conditions for various possible orbits of satellite depending upon the horizontal/tangential speed of projection.
Answer the following question in detail.
State any four applications of a communication satellite.
Answer the following question in detail.
Why an astronaut in an orbiting satellite has a feeling of weightlessness?
Describe how an artificial satellite using a two-stage rocket is launched in an orbit around the Earth.
Solve the following problem.
Calculate the value of acceleration due to gravity on the surface of Mars if the radius of Mars = 3.4 × 103 km and its mass is 6.4 × 1023 kg.
Solve the following problem.
What is the gravitational potential due to the Earth at a point which is at a height of 2RE above the surface of the Earth?
(Mass of the Earth is 6 × 1024 kg, radius of the Earth = 6400 km and G = 6.67 × 10–11 N m2 kg–2)
Reason of weightlessness in a satellite is ____________.
If the Earth-Sun distance is held constant and the mass of the Sun is doubled, then the period of revolution of the earth around the Sun will change to ____________.
If a body weighing 40 kg-wt is taken inside the earth to a depth to `1/2` th radius of the earth, then the weight of the body at that point is ____________.
A satellite of mass 'm', revolving round the earth of radius 'r' has kinetic energy (E). Its angular momentum is ______.
A geostationary satellite is orbiting the earth at a height 6R above the surface of the earth, where R is the radius of the earth. This time period of another satellite at a height (2.5 R) from the surface of the earth is ______.
Is it possibe for a body to have inertia but no weight?
A satellite is revolving in a circular orbit at a height 'h' above the surface of the earth of radius 'R'. The speed of the satellite in its orbit is one-fourth the escape velocity from the surface of the earth. The relation between 'h' and 'R' is ______.
The ratio of binding energy of a satellite at rest on earth's surface to the binding energy of a satellite of same mass revolving around the earth at a height h above the earth's surface is ______ (R = radius of the earth).
Two satellites of same mass are orbiting round the earth at heights of r1 and r2 from the centre of earth. Their potential energies are in the ratio of ______.