Advertisements
Advertisements
प्रश्न
Describe the following sets in set-builder form:
{2, 4, 6, 8 .....}
उत्तर
Set-builder form:
To describe a set, a variable x (each element of the set) is written inside braces. Then, after putting a colon, the common property P(x) possessed by each element of the set is written within braces.
\[ {x: x = 2n, n \in N}\]
APPEARS IN
संबंधित प्रश्न
Identify whether the following is set or not? Justify your answer.
A team of eleven best-cricket batsmen of the world.
Identify whether the following is set or not? Justify your answer.
The collection of all even integers.
Write the following set in roster form:
E = The set of all letters in the word TRIGONOMETRY
Write the following set in the set-builder form:
{2, 4, 8, 16, 32}
List all the elements of the following set:
B = `{x : x "is an integer", -1/2 < x < 9/2}`
List all the elements of the following set:
E = {x : x is a month of a year not having 31 days}
Which of the following collection are sets? Justify your answer:
A collection of novels written by Munshi Prem Chand.
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
−4 ...... A
Describe the following sets in Roster form:
{x : x is a letter before e in the English alphabet}
Describe the following sets in Roster form:
{x ∈ N : x2 < 25};
List all the elements of the following set:
D = {x : x is a vowel in the word "EQUATION"}
List all the elements of the following set:
F = {x : x is a letter of the word "MISSISSIPPI"}
Match each of the sets on the left in the roster form with the same set on the right described in the set-builder form:
(i) | {A, P, L, E} | (i) | x : x + 5 = 5, x ∈ Z |
(ii) | {5, −5} | (ii) | {x : x is a prime natural number and a divisor of 10} |
(iii) | {0} | (iii) | {x : x is a letter of the word "RAJASTHAN"} |
(iv) | {1, 2, 5, 10,} | (iv) | {x: x is a natural number and divisor of 10} |
(v) | {A, H, J, R, S, T, N} | (v) | x : x2 − 25 = 0 |
(vi) | {2, 5} | (vi) | {x : x is a letter of the word "APPLE"} |
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\left\{ a, b \right\} \subset \left\{ a, \left\{ b, c \right\} \right\}\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\phi \in A\]
Let \[\left\{ \left\{ 2 \right\}, \left\{ 1 \right\} \right\} \not\subset A\] Which of the following are true? \[\left\{ \left\{ 2 \right\}, \left\{ 1 \right\} \right\} \not\subset A\]
What is the total number of proper subsets of a set consisting of n elements?
Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈ or ∉ in the blank space:
4 _____ A
Describe the following set in Roster form
A = {x/x is a letter of the word 'MOVEMENT'}
Describe the following set in Roster form
B = `{x//x "is an integer", -3/2 < x < 9/2}`
Describe the following set in Set-Builder form
`{1/2, 2/5, 3/10, 4/17, 5/26, 6/37, 7/50}`
From amongst 2000 literate individuals of a town, 70% read Marathi newspapers, 50% read English newspapers and 32.5% read both Marathi and English newspapers. Find the number of individuals who read at least one of the newspapers
From amongst 2000 literate individuals of a town, 70% read Marathi newspapers, 50% read English newspapers and 32.5% read both Marathi and English newspapers. Find the number of individuals who read neither Marathi and English newspaper
From amongst 2000 literate individuals of a town, 70% read Marathi newspapers, 50% read English newspapers and 32.5% read both Marathi and English newspapers. Find the number of individuals who read Only one of the newspapers
Write the following interval in Set-Builder form
`(-∞, 5]`
Write the following interval in Set-Builder form
[– 3, 4)
A college awarded 38 medals in volleyball, 15 in football, and 20 in basketball. The medals awarded to a total of 58 players and only 3 players got medals in all three sports. How many received medals in exactly two of the three sports?
Answer the following:
Write down the following set in set-builder form
{10, 20, 30, 40, 50}
Let X = {1, 2, 3, 4, 5, 6}. If n represent any member of X, express the following as sets:
n + 5 = 8
Let X = {1, 2, 3, 4, 5, 6}. If n represent any member of X, express the following as sets:
n is greater than 4
Write the following sets in the roaster form:
D = {t | t3 = t, t ∈ R}
State which of the following statements is true and which is false. Justify your answer.
496 ∉ {y | the sum of all the positive factors of y is 2y}.
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in Mathematics and Science but not in English
Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in Mathematics only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study Sanskrit only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study none of the three languages
In a class of 60 students, 25 students play cricket and 20 students play tennis, and 10 students play both the games. Then, the number of students who play neither is ______.
A survey shows that 63% of the people watch a News Channel whereas 76% watch another channel. If x% of the people watch both channel, then ______.
State True or False for the following statement.
Let sets R and T be defined as
R = {x ∈ Z | x is divisible by 2}
T = {x ∈ Z | x is divisible by 6}. Then T ⊂ R