हिंदी

In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:French = 17, English = 13, Sanskrit = 15 French and English = - Mathematics

Advertisements
Advertisements

प्रश्न

In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study Sanskrit only

आकृति
योग

उत्तर

Let us use Venn diagram method.

Total number of students = 50

⇒ n(U) = 50

Number of students who study French = 17

⇒ n(F) = 17

Number of students who study English = 13

⇒ n(E) = 13

Number of students who study Sanskrit = 15

⇒ n(S) = 15

Number of students who study French and English = 9

⇒ n(F ∩ E) = 9

Number of students who study English and Sanskrit = 4

⇒ n(E ∩ S) = 4

Number of students who study French and Sanskrit = 5

⇒ n(F ∩ S) = 5

Number of students who study French, English and Sanskrit = 3

⇒ n(F ∩ E ∩ S) = 3

n(F) = 17

a + b + d + e = 17  ......(i)

n(E) = 13

b + c + e + f = 13   ......(ii)

n(S) = 15

d + e + f + g = 15   ......(iii)

n(F ∩ E) = 9

∴ b + e = 9   ......(iv)

n(E ∩ S) = 4

∴ e + f = 4   .......(v)

n(F ∩ S) = 5

∴ d + e = 5  ......(vi)

n(E ∩ F ∩ S) = 3

∴ e = 3   .......(vii)

From (iv)

b + 3 = 9

⇒ b = 9 – 3 = 6

From (v)

3 + f = 4

⇒ f = 4 – 3 = 1

From (vi)

d + 3 = 5

⇒ d = 5 – 3 = 2

Now from equation (i)

a + 6 + 2 + 3 = 17

⇒ a = 17 – 11

⇒ a = 6

Now from equation (ii)

6 + c + 3 + 1 = 13

⇒ c = 13 – 10

⇒ c = 3

From equation (iii)

2 + 3 + 1 + g = 15

⇒ g = 15 – 6

⇒ g = 9

Number of students who study Sanskrit only, g = 9

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Sets - Exercise [पृष्ठ १५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 1 Sets
Exercise | Q 28.(iii) | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Identify whether the following is set or not? Justify your answer.

The collection of all even integers.


Write the following set in the set-builder form:

{2, 4, 6, …}


Match each of the set on the left in the roster form with the same set on the right described in set-builder form:

(i) {1, 2, 3, 6} (a) {x : x is a prime number and a divisor of 6}
(ii) {2, 3} (b) {x : x is an odd natural number less than 10}
(iii) {M, A, T, H, E, I, C, S} (c) {x : x is natural number and divisor of 6}
(iv) {1, 3, 5, 7, 9} (d) {x : x is a letter of the word MATHEMATICS}

Which of the following collection are sets? Justify your answer:

 The collection of all girls in your class.


Describe the following sets in Roster form: 

{x : x is a letter before e in the English alphabet}


Describe the following sets in set-builder form: 

E = {0}


Describe the following sets in set-builder form: 

{1, 4, 9, 16, ..., 100} 


List all the elements of the following sets: 

\[A = \left\{ x: x^2 \leq 10, x \in Z \right\}\] 


List all the elements of the following set:

F = {x : x is a letter of the word "MISSISSIPPI"}


Match each of the sets on the left in the roster form with the same set on the right described in the set-builder form: 

(i) {APLE} (i) x : x + 5 = 5, x ∈ Z
(ii) {5, −5} (ii) {x : x is a prime natural number and a divisor of 10}
(iii) {0} (iii) {x : x is a letter of the word "RAJASTHAN"}
(iv) {1, 2, 5, 10,} (iv) {xx is a natural number and divisor of 10}
(v) {AHJRSTN} (v) x : x2 − 25 = 0
(vi) {2, 5} (vi) {x : x is a letter of the word "APPLE"}

Write the set of all vowels in the English alphabet which precede q.


Which of the following statement are correct?
Write a correct form of each of the incorrect statements.  

\[a \subset \left\{ a, b, c \right\}\] 


Which of the following statement are correct?
Write a correct form of each of the incorrect statement.

\[\left\{ a, b \right\} \subset \left\{ a, \left\{ b, c \right\} \right\}\] 


Write down all possible subsets of each of the following set: 

 {a


What is the total number of proper subsets of a set consisting of n elements? 


If A is any set, prove that: \[A \subseteq \phi \Leftrightarrow A = \phi .\] 


Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈ or ∉ in the blank space:

8 ____ A


Write the following interval in Set-Builder form:

[6, 12]


Write the following interval in Set-Builder form

(2, 5]


Given that E = {2, 4, 6, 8, 10}. If n represents any member of E, then, write the following sets containing all numbers represented by n2 


Let X = {1, 2, 3, 4, 5, 6}. If n represent any member of X, express the following as sets:
n + 5 = 8


Write the following sets in the roaster from:
B = {x | x2 = x, x ∈ R}


State which of the following statement is true and which is false. Justify your answer.

35 ∈ {x | x has exactly four positive factors}.


Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science; 4 in English and Science; 4 in all the three. Find how many passed in more than one subject only


In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study French only


In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study English and Sanskrit but not French


Let S = {x | x is a positive multiple of 3 less than 100}
P = {x | x is a prime number less than 20}. Then n(S) + n(P) is ______.


State True or False for the following statement.

Let sets R and T be defined as
R = {x ∈ Z | x is divisible by 2}
T = {x ∈ Z | x is divisible by 6}. Then T ⊂ R


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×