Advertisements
Advertisements
प्रश्न
Differentiate the following w. r. t. x. : `x^(5/2) e^x`
उत्तर
Let y = `x^(5/2) "e"^x`
Differentiating w.r.t. x, we get
`dy/dx = d/dx(x^(5/2)"e"^x)`
= `x^(5/2)d/dx("e"^x)+ "e"^x d/dx(x^(5/2))`
= `x^(5/2) ("e"^x) + "e"^x(5/2x^(3/2))`
= `"e"^x(x^(5/2)+ 5/2 x^(3/2))`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function w.r.t. x.:
x–9
Find the derivative of the following function w. r. t. x.:
`7xsqrt x`
Differentiate the following w. r. t. x. : `sqrtx (x^2 + 1)^2`
Differentiate the following w. r. t. x. : x3 log x
Find the derivative of the following w. r. t. x by using method of first principle:
sin (3x)
Find the derivative of the following w. r. t. x by using method of first principle:
e2x+1
Find the derivative of the following w. r. t. x by using method of first principle:
sec (5x − 2)
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`sqrt(2x + 5)` at x = 2
Examine the function
f(x) `{:(= x^2 cos (1/x)",", "for" x ≠ 0),(= 0",", "for" x = 0):}`
for continuity and differentiability at x = 0
Select the correct answer from the given alternative:
If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =
Select the correct answer from the given alternative:
If f(x) `{:(= 2x + 6, "for" 0 ≤ x ≤ 2),(= "a"x^2 + "b"x, "for" 2 < x ≤4):}` is differentiable at x = 2 then the values of a and b are
Select the correct answer from the given alternative:
If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =
Find the values of p and q that make function f(x) differentiable everywhere on R
f(x) `{:( = 3 - x"," , "for" x < 1),(= "p"x^2 + "q"x",", "for" x ≥ 1):}`
Determine all real values of p and q that ensure the function
f(x) `{:( = "p"x + "q"",", "for" x ≤ 1),(= tan ((pix)/4)",", "for" 1 < x < 2):}` is differentiable at x = 1
Test whether the function f(x) `{:(= 2x - 3",", "for" x ≥ 2),(= x - 1",", "for" x < 2):}` is differentiable at x = 2
If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1