Advertisements
Advertisements
प्रश्न
Find the derivative of the following function w. r. t. x.:
`7xsqrt x`
उत्तर
Let y = `7xsqrt x`
=` 7x^1x^(1/2)`
`y = 7x^(3/2)`
Differentiating w.r.t. x, we get
`dy/dx = d/dx7x^(3/2)`
= `7xx3/2x^(3/2-1)`
= `21/2 x^(1/2)`
=`21/2sqrtx`
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following functions w. r. t. x.:
`x^(3/2)`
Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`
Differentiate the following w. r. t. x. : `x^(5/2) e^x`
Find the derivative of the following w. r. t. x by using method of first principle:
x2 + 3x – 1
Find the derivative of the following w. r. t. x by using method of first principle:
log (2x + 5)
Find the derivative of the following w. r. t. x by using method of first principle:
sec (5x − 2)
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`sqrt(2x + 5)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`"e"^(3x - 4)` at x = 2
Test the continuity and differentiability of f(x) `{:(= 3 x + 2, "if" x > 2),(= 12 - x^2, "if" x ≤ 2):}}` at x = 2
If f(x) `{:(= sin x - cos x, "if" x ≤ pi/2),(= 2x - pi + 1, "if" x > pi /2):}` Test the continuity and differentiability of f at x = `π/2`
Select the correct answer from the given alternative:
If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =
Determine whether the following function is differentiable at x = 3 where,
f(x) `{:(= x^2 + 2"," , "for" x ≥ 3),(= 6x - 7"," , "for" x < 3):}`
Find the values of p and q that make function f(x) differentiable everywhere on R
f(x) `{:( = 3 - x"," , "for" x < 1),(= "p"x^2 + "q"x",", "for" x ≥ 1):}`
Determine all real values of p and q that ensure the function
f(x) `{:( = "p"x + "q"",", "for" x ≤ 1),(= tan ((pix)/4)",", "for" 1 < x < 2):}` is differentiable at x = 1
Test whether the function f(x) `{:(= x^2 + 1",", "for" x ≥ 2),(= 2x + 1",", "for" x < 2):}` is differentiable at x = 2
Test whether the function f(x) `{:(= 5x - 3x^2",", "for" x ≥ 1),(= 3 - x",", "for" x < 1):}` is differentiable at x = 1
If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1