Advertisements
Advertisements
प्रश्न
Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`
उत्तर
Let y = `x^(5/2) + 5x^(7/5)`
Differentiating w.r.t. x, we get
= `dy/dx = d/dx(x^(5/2) + 5x^(7/5))`
= `d/dx x^(5/2)+5d/dx x^(7/5)`
= `5/2x^(5/2-1) + 5 7/5x^(7/5-1)`
= `5/2x^(3/2) + 7x^(2/5)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w. r. t. x. : x3 log x
Differentiate the following w. r. t. x. : ex log x
Differentiate the following w. r. t. x. : x3 .3x
Find the derivative of the following w. r. t. x by using method of first principle:
x2 + 3x – 1
Find the derivative of the following w. r. t. x by using method of first principle:
sin (3x)
Find the derivative of the following w. r. t. x by using method of first principle:
e2x+1
Find the derivative of the following w. r. t. x by using method of first principle:
log (2x + 5)
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`sqrt(2x + 5)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
tan x at x = `pi/4`
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`2^(3x + 1)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
log(2x + 1) at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
cos x at x = `(5pi)/4`
Show that the function f is not differentiable at x = −3, where f(x) `{:(= x^2 + 2, "for" x < - 3),(= 2 - 3x, "for" x ≥ - 3):}`
Discuss the continuity and differentiability of f(x) = x |x| at x = 0
Discuss the continuity and differentiability of f(x) = (2x + 3) |2x + 3| at x = `- 3/2`
Discuss the continuity and differentiability of f(x) at x = 2
f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]
Select the correct answer from the given alternative:
If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =
Test whether the function f(x) `{:(= x^2 + 1",", "for" x ≥ 2),(= 2x + 1",", "for" x < 2):}` is differentiable at x = 2
If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1