हिंदी

Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle: log(2x + 1) at x = 2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

log(2x + 1) at x = 2

योग

उत्तर

let f(x) = log(2x + 1)

∴ f(2) = log(4 + 1) = log 5

f(2 + h) = log[2(2 + h) + 1] = log(5 + 2h)

By definition,

f'(2) = `lim_("h" -> 0) ("f"(2 + "h") - "f"(2))/"h"`

= `lim_("h" -> 0) (log(5 + 2"h") - log 5)/"h"`

= `lim_("h" -> 0) 1/"h" log ((5 + 2"h")/5)`

= `lim_("h" -> 0) (log(1 + (2"h")/5))/(((2"h")/5)) xx 2/5`

= `2/5 lim_("h" -> 0) (log(1 + (2"h")/5))/(((2"h")/5)`

= `2/5 xx 1    ...[because "h" -> 0, (2"h")/5 -> 0 and lim_(x -> 0) (log(1 + x))/x = 1]`

= `2/5`

shaalaa.com
Definition of Derivative and Differentiability
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differentiation - Exercise 9.1 [पृष्ठ १८७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 9 Differentiation
Exercise 9.1 | Q 2. (d) | पृष्ठ १८७

संबंधित प्रश्न

Find the derivative of the following function w.r.t. x.:

x–9


Find the derivative of the following functions w. r. t. x.:

`x^(3/2)`


Find the derivative of the following function w. r. t. x.:

`7xsqrt x`


Find the derivative of the following function w. r. t. x.:

35


Differentiate the following w. r. t. x.: x5 + 3x4


Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`


Differentiate the following w. r. t. x. : `2/7 x^(7/2) + 5/2 x^(2/5)`


Differentiate the following w. r. t. x. : `sqrtx (x^2 + 1)^2`


Differentiate the following w. r. t. x. : x3 log x


Differentiate the following w. r. t. x. : ex log x


Find the derivative of the following w. r. t. x by using method of first principle:

e2x+1


Find the derivative of the following w. r. t. x by using method of first principle:

3x 


Find the derivative of the following w. r. t. x by using method of first principle:

log (2x + 5)


Find the derivative of the following w. r. t. x by using method of first principle:

tan (2x + 3)


Find the derivative of the following w. r. t. x by using method of first principle:

`x sqrt(x)`


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`sqrt(2x + 5)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`"e"^(3x - 4)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

cos x at x = `(5pi)/4`


Discuss the continuity and differentiability of f(x) = x |x| at x = 0


Discuss the continuity and differentiability of f(x) = (2x + 3) |2x + 3| at x = `- 3/2`


Discuss the continuity and differentiability of f(x) at x = 2

f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]


Test the continuity and differentiability of f(x) `{:(= 3 x + 2, "if"  x > 2),(= 12 - x^2, "if"  x ≤ 2):}}` at x = 2


If f(x) `{:(= sin x - cos x, "if"  x ≤ pi/2),(= 2x - pi + 1, "if"  x > pi /2):}` Test the continuity and differentiability of f at x = `π/2`


Examine the function

f(x) `{:(= x^2 cos (1/x)",", "for"  x ≠ 0),(= 0",", "for"  x = 0):}`

for continuity and differentiability at x = 0


Select the correct answer from the given alternative:

If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =


Select the correct answer from the given alternative:

If f(x) `{:(= 2x + 6, "for"  0 ≤ x ≤ 2),(= "a"x^2 + "b"x, "for"  2 < x ≤4):}` is differentiable at x = 2 then the values of a and b are


Determine whether the following function is differentiable at x = 3 where,

f(x) `{:(= x^2 + 2","  ,  "for"  x ≥ 3),(= 6x - 7"," ,  "for"  x < 3):}`


Determine the values of p and q that make the function f(x) differentiable on R where

f(x) `{:( = "p"x^3",", "for"  x < 2),(= x^2 + "q"",", "for"  x ≥ 2):}`


Test whether the function f(x) `{:(= x^2 + 1",", "for"  x ≥ 2),(= 2x + 1",", "for"  x < 2):}` is differentiable at x = 2


Test whether the function f(x) `{:(= 5x - 3x^2",", "for"  x ≥ 1),(= 3 - x",", "for"  x < 1):}` is differentiable at x = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×