English

Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle: log(2x + 1) at x = 2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

log(2x + 1) at x = 2

Sum

Solution

let f(x) = log(2x + 1)

∴ f(2) = log(4 + 1) = log 5

f(2 + h) = log[2(2 + h) + 1] = log(5 + 2h)

By definition,

f'(2) = `lim_("h" -> 0) ("f"(2 + "h") - "f"(2))/"h"`

= `lim_("h" -> 0) (log(5 + 2"h") - log 5)/"h"`

= `lim_("h" -> 0) 1/"h" log ((5 + 2"h")/5)`

= `lim_("h" -> 0) (log(1 + (2"h")/5))/(((2"h")/5)) xx 2/5`

= `2/5 lim_("h" -> 0) (log(1 + (2"h")/5))/(((2"h")/5)`

= `2/5 xx 1    ...[because "h" -> 0, (2"h")/5 -> 0 and lim_(x -> 0) (log(1 + x))/x = 1]`

= `2/5`

shaalaa.com
Definition of Derivative and Differentiability
  Is there an error in this question or solution?
Chapter 9: Differentiation - Exercise 9.1 [Page 187]

RELATED QUESTIONS

Find the derivative of the following functions w. r. t. x.:

`x^(3/2)`


Find the derivative of the following function w. r. t. x.:

35


Differentiate the following w. r. t. x.: x5 + 3x4


Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`


Differentiate the following w. r. t. x. : `2/7 x^(7/2) + 5/2 x^(2/5)`


Differentiate the following w. r. t. x. : x3 log x


Differentiate the following w. r. t. x. : `x^(5/2) e^x`


Differentiate the following w. r. t. x. : ex log x


Differentiate the following w. r. t. x. : x3 .3x


Find the derivative of the following w. r. t. x by using method of first principle:

e2x+1


Find the derivative of the following w. r. t. x by using method of first principle:

tan (2x + 3)


Find the derivative of the following w. r. t. x by using method of first principle:

sec (5x − 2)


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`sqrt(2x + 5)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`2^(3x + 1)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

cos x at x = `(5pi)/4`


Discuss the continuity and differentiability of f(x) = x |x| at x = 0


Discuss the continuity and differentiability of f(x) at x = 2

f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]


If f(x) `{:(= sin x - cos x, "if"  x ≤ pi/2),(= 2x - pi + 1, "if"  x > pi /2):}` Test the continuity and differentiability of f at x = `π/2`


Examine the function

f(x) `{:(= x^2 cos (1/x)",", "for"  x ≠ 0),(= 0",", "for"  x = 0):}`

for continuity and differentiability at x = 0


Select the correct answer from the given alternative:

If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =


Select the correct answer from the given alternative:

If f(x) `{:( = x^2 + sin x + 1, "for"  x ≤ 0),(= x^2 - 2x + 1, "for"  x ≤ 0):}` then


Select the correct answer from the given alternative:

If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =


Determine whether the following function is differentiable at x = 3 where,

f(x) `{:(= x^2 + 2","  ,  "for"  x ≥ 3),(= 6x - 7"," ,  "for"  x < 3):}`


Find the values of p and q that make function f(x) differentiable everywhere on R

f(x) `{:( = 3 - x"," , "for"  x < 1),(= "p"x^2 + "q"x",", "for"  x ≥ 1):}`


Determine all real values of p and q that ensure the function

f(x) `{:( = "p"x + "q"",", "for"  x ≤ 1),(= tan ((pix)/4)",", "for"  1 < x < 2):}` is differentiable at x = 1


Discuss whether the function f(x) = |x + 1| + |x  – 1| is differentiable ∀ x ∈ R


Test whether the function f(x) `{:(= 2x - 3",", "for"  x ≥ 2),(= x - 1",", "for"  x < 2):}` is differentiable at x = 2


Test whether the function f(x) `{:(= x^2 + 1",", "for"  x ≥ 2),(= 2x + 1",", "for"  x < 2):}` is differentiable at x = 2


Test whether the function f(x) `{:(= 5x - 3x^2",", "for"  x ≥ 1),(= 3 - x",", "for"  x < 1):}` is differentiable at x = 1


If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×