Advertisements
Advertisements
Question
Find the derivative of the following w. r. t. x by using method of first principle:
tan (2x + 3)
Solution
Let f(x) = tan (2x + 3)
∴ f(x + h) = tan [2(x + h) + 3] = tan [(2x + 3) + 2h]
f(x + h) – f(x) = tan [(2x + 3) + 2h] – tan (2x + 3)
= `(sin[(2x + 3) + 2"h"])/(cos[(2x + 3) + 2"h"]) - (sin(2x + 3))/(cos(2x + 3))`
= `(sin[(2x + 3) + 2"h"] cos[2x + 3] - cos[(2x + 3) + 2"h"] sin[2x + 3])/(cos[2x + 3 + 2"h"]*cos[2x + 3])`
= `(sin[(2x + 3) + 2"h" - (2x + 3)])/(cos[2x + 3 + 2"h"]*cos[2x + 3])`
= `(sin2"h")/(cos[2x + 3 + 2"h"]* cos[2x + 3])`
By definition,
f'(x) = `lim_("h" -> 0) ("f"(x + "h") - "f"(x))/"h"`
= `lim_("h" -> 0) (sin 2"h")/("h" cos [2x + 3 + 2"h"]*cos[2x + 3])`
= `2/(cos(2x + 3)) lim_("h" -> 0) [((sin2"h")/(2"h"))* 1/(cos [2x + 3 + 2"h"])]`
= `2/(cos(2x + 3)) [lim_("h" -> 0) (sin2"h")/(2"h")] xx 1/(lim_("h" -> 0) [cos (2x + 2"h" + 3)]`
= `2/(cos(2x + 3)) xx 1 xx 1/(cos(2x + 0 + 3)) ...[because "h" -> 0, 2"h" -> 0 "and" lim_(theta -> 0) sintheta/theta = 1]`
= 2 sec2 (2x + 3)
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following functions w. r. t. x.:
`x^(3/2)`
Find the derivative of the following function w. r. t. x.:
`7xsqrt x`
Find the derivative of the following function w. r. t. x.:
35
Differentiate the following w. r. t. x.: x5 + 3x4
Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`
Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`
Differentiate the following w. r. t. x. : `x^(5/2) e^x`
Find the derivative of the following w. r. t. x by using method of first principle:
x2 + 3x – 1
Find the derivative of the following w. r. t. x by using method of first principle:
sin (3x)
Find the derivative of the following w. r. t. x by using method of first principle:
e2x+1
Find the derivative of the following w. r. t. x by using method of first principle:
3x
Find the derivative of the following w. r. t. x by using method of first principle:
log (2x + 5)
Find the derivative of the following w. r. t. x by using method of first principle:
sec (5x − 2)
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
tan x at x = `pi/4`
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`2^(3x + 1)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
log(2x + 1) at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`"e"^(3x - 4)` at x = 2
Show that f(x) = x2 is continuous and differentiable at x = 0
Discuss the continuity and differentiability of f(x) at x = 2
f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]
Test the continuity and differentiability of f(x) `{:(= 3 x + 2, "if" x > 2),(= 12 - x^2, "if" x ≤ 2):}}` at x = 2
If f(x) `{:(= sin x - cos x, "if" x ≤ pi/2),(= 2x - pi + 1, "if" x > pi /2):}` Test the continuity and differentiability of f at x = `π/2`
Select the correct answer from the given alternative:
If f(x) `{:(= 2x + 6, "for" 0 ≤ x ≤ 2),(= "a"x^2 + "b"x, "for" 2 < x ≤4):}` is differentiable at x = 2 then the values of a and b are
Select the correct answer from the given alternative:
If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =
Determine whether the following function is differentiable at x = 3 where,
f(x) `{:(= x^2 + 2"," , "for" x ≥ 3),(= 6x - 7"," , "for" x < 3):}`
Find the values of p and q that make function f(x) differentiable everywhere on R
f(x) `{:( = 3 - x"," , "for" x < 1),(= "p"x^2 + "q"x",", "for" x ≥ 1):}`
Determine all real values of p and q that ensure the function
f(x) `{:( = "p"x + "q"",", "for" x ≤ 1),(= tan ((pix)/4)",", "for" 1 < x < 2):}` is differentiable at x = 1
Discuss whether the function f(x) = |x + 1| + |x – 1| is differentiable ∀ x ∈ R
Test whether the function f(x) `{:(= x^2 + 1",", "for" x ≥ 2),(= 2x + 1",", "for" x < 2):}` is differentiable at x = 2
Test whether the function f(x) `{:(= 5x - 3x^2",", "for" x ≥ 1),(= 3 - x",", "for" x < 1):}` is differentiable at x = 1
If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1