English

Find the derivative of the following w. r. t. x by using method of first principle: e2x+1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the derivative of the following w. r. t. x by using method of first principle:

e2x+1

Sum

Solution

Let f(x) = e2x+1 

∴ f(x + h) = `"e"^(2(x + "h") + 1)`

= `"e"^(2x + 2"h" + 1)`

By first principle, we get

f'(x) = `lim_("h" -> 0) ("f"(x + "h") - "f"(x))/"h"`

= `lim_("h" -> 0) ("e"^(2x + 2"h" + 1) - "e"^(2x +1))/"h"`

= `lim_("h" -> 0) "e"^(2x + 1) (("e"^(2"h") - 1))/"h"`

= `"e"^(2x + 1) (lim_("h" -> 0) ("e"^(2"h") - 1)/(2"h")) xx 2`

= 2 e2x+1 (1)  ...`[lim_(x -> 0) ("e"^("p"x) - 1)/("p"x) = 1]` 

= 2 e2x+1  

shaalaa.com
Definition of Derivative and Differentiability
  Is there an error in this question or solution?
Chapter 9: Differentiation - Exercise 9.1 [Page 187]

RELATED QUESTIONS

Find the derivative of the following function w. r. t. x.:

`7xsqrt x`


Find the derivative of the following function w. r. t. x.:

35


Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`


Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`


Differentiate the following w. r. t. x. : x3 log x


Differentiate the following w. r. t. x. : `x^(5/2) e^x`


Differentiate the following w. r. t. x. : ex log x


Differentiate the following w. r. t. x. : x3 .3x


Find the derivative of the following w. r. t. x by using method of first principle:

log (2x + 5)


Find the derivative of the following w. r. t. x by using method of first principle:

tan (2x + 3)


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`sqrt(2x + 5)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`2^(3x + 1)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`"e"^(3x - 4)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

cos x at x = `(5pi)/4`


Show that f(x) = x2 is continuous and differentiable at x = 0


Discuss the continuity and differentiability of f(x) = x |x| at x = 0


Discuss the continuity and differentiability of f(x) = (2x + 3) |2x + 3| at x = `- 3/2`


Test the continuity and differentiability of f(x) `{:(= 3 x + 2, "if"  x > 2),(= 12 - x^2, "if"  x ≤ 2):}}` at x = 2


Examine the function

f(x) `{:(= x^2 cos (1/x)",", "for"  x ≠ 0),(= 0",", "for"  x = 0):}`

for continuity and differentiability at x = 0


Select the correct answer from the given alternative:

If f(x) `{:( = x^2 + sin x + 1, "for"  x ≤ 0),(= x^2 - 2x + 1, "for"  x ≤ 0):}` then


Select the correct answer from the given alternative:

If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =


Determine whether the following function is differentiable at x = 3 where,

f(x) `{:(= x^2 + 2","  ,  "for"  x ≥ 3),(= 6x - 7"," ,  "for"  x < 3):}`


Find the values of p and q that make function f(x) differentiable everywhere on R

f(x) `{:( = 3 - x"," , "for"  x < 1),(= "p"x^2 + "q"x",", "for"  x ≥ 1):}`


Discuss whether the function f(x) = |x + 1| + |x  – 1| is differentiable ∀ x ∈ R


Test whether the function f(x) `{:(= 2x - 3",", "for"  x ≥ 2),(= x - 1",", "for"  x < 2):}` is differentiable at x = 2


Test whether the function f(x) `{:(= x^2 + 1",", "for"  x ≥ 2),(= 2x + 1",", "for"  x < 2):}` is differentiable at x = 2


Test whether the function f(x) `{:(= 5x - 3x^2",", "for"  x ≥ 1),(= 3 - x",", "for"  x < 1):}` is differentiable at x = 1


If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×