Advertisements
Advertisements
Question
Differentiate the following w. r. t. x. : ex log x
Solution
Let y = ex log x
Differentiating w.r.t. x, we get
`dy/dx = d/dx ("e"^xlog x)`
= `"e"^xd/dx(logx) + (logx) d/dx ("e"^x)`
=`"e"^x(1/x) + (logx)("e"^x)`
= `"e"^x(1/x+logx)`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function w.r.t. x.:
x–9
Find the derivative of the following function w. r. t. x.:
`7xsqrt x`
Differentiate the following w. r. t. x. : x3 log x
Find the derivative of the following w. r. t. x by using method of first principle:
3x
Find the derivative of the following w. r. t. x by using method of first principle:
tan (2x + 3)
Find the derivative of the following w. r. t. x by using method of first principle:
`x sqrt(x)`
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`sqrt(2x + 5)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`2^(3x + 1)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
cos x at x = `(5pi)/4`
Discuss the continuity and differentiability of f(x) = x |x| at x = 0
If f(x) `{:(= sin x - cos x, "if" x ≤ pi/2),(= 2x - pi + 1, "if" x > pi /2):}` Test the continuity and differentiability of f at x = `π/2`
Select the correct answer from the given alternative:
If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =
Select the correct answer from the given alternative:
If f(x) `{:(= 2x + 6, "for" 0 ≤ x ≤ 2),(= "a"x^2 + "b"x, "for" 2 < x ≤4):}` is differentiable at x = 2 then the values of a and b are
Determine the values of p and q that make the function f(x) differentiable on R where
f(x) `{:( = "p"x^3",", "for" x < 2),(= x^2 + "q"",", "for" x ≥ 2):}`
Determine all real values of p and q that ensure the function
f(x) `{:( = "p"x + "q"",", "for" x ≤ 1),(= tan ((pix)/4)",", "for" 1 < x < 2):}` is differentiable at x = 1
Discuss whether the function f(x) = |x + 1| + |x – 1| is differentiable ∀ x ∈ R
If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1