Advertisements
Advertisements
Question
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
cos x at x = `(5pi)/4`
Solution
Let f(x) = cos x
∴ `"f"((5pi)/4) = cos ((5pi)/4)`
`"f"((5pi)/4 + "h") = cos ((5pi)/4 + "h")`
∴ `"f"((5pi)/4 + "h") - "f"((5pi)/4)`
= `cos((5pi)/4 + "h") - cos ((5pi)/4)`
= `-2sin [((5pi)/4 + "h" + (5pi)/4)/2] sin [((5pi)/4 + "h" - (5pi)/4)/2]`
= `-2 sin [((5pi)/2 + "h")/2] sin ("h"/2)`
By definition,
`"f'"((5pi)/4) = lim_("h" -> 0) ("f"((5pi)/4 + "h") - "f"((5pi)/4))/"h"`
= `lim_("h" -> 0) (-2sin [((5pi)/2 + "h")/2] sin("h"/2))/"h"`
= `lim_("h" -> 0) [-2 sin [((5pi)/2 + "h")/2] (sin("h"/2))/(("h"/2))] xx 1/2`
= `-[lim_("h" -> 0) sin [((5pi)/2 + "h")/2] ] xx [lim_("h" -> 0) (sin("h"/2))/("h"/2)]`
= `-sin [((5pi)/2 + 0)/2] xx 1 ...[because "h" -> 0, "h"/2 -> 0 "and" lim_(theta -> 0) sintheta/theta = 1]`
= `- sin ((5pi)/4)`
= `- sin (pi + pi/4)`
= `-(- sin pi/4)`
= `1/sqrt(2)`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following functions w. r. t. x.:
`x^(3/2)`
Find the derivative of the following function w. r. t. x.:
`7xsqrt x`
Find the derivative of the following function w. r. t. x.:
35
Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`
Differentiate the following w. r. t. x. : `sqrtx (x^2 + 1)^2`
Differentiate the following w. r. t. x. : x3 log x
Differentiate the following w. r. t. x. : ex log x
Find the derivative of the following w. r. t. x by using method of first principle:
x2 + 3x – 1
Find the derivative of the following w. r. t. x by using method of first principle:
log (2x + 5)
Find the derivative of the following w. r. t. x by using method of first principle:
sec (5x − 2)
Find the derivative of the following w. r. t. x by using method of first principle:
`x sqrt(x)`
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`2^(3x + 1)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`"e"^(3x - 4)` at x = 2
Show that the function f is not differentiable at x = −3, where f(x) `{:(= x^2 + 2, "for" x < - 3),(= 2 - 3x, "for" x ≥ - 3):}`
Show that f(x) = x2 is continuous and differentiable at x = 0
Discuss the continuity and differentiability of f(x) = x |x| at x = 0
Discuss the continuity and differentiability of f(x) = (2x + 3) |2x + 3| at x = `- 3/2`
Test the continuity and differentiability of f(x) `{:(= 3 x + 2, "if" x > 2),(= 12 - x^2, "if" x ≤ 2):}}` at x = 2
If f(x) `{:(= sin x - cos x, "if" x ≤ pi/2),(= 2x - pi + 1, "if" x > pi /2):}` Test the continuity and differentiability of f at x = `π/2`
Select the correct answer from the given alternative:
If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =
Select the correct answer from the given alternative:
If f(x) `{:( = x^2 + sin x + 1, "for" x ≤ 0),(= x^2 - 2x + 1, "for" x ≤ 0):}` then
Select the correct answer from the given alternative:
If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =
Test whether the function f(x) `{:(= 5x - 3x^2",", "for" x ≥ 1),(= 3 - x",", "for" x < 1):}` is differentiable at x = 1
If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1