हिंदी

Determine all real values of p and q that ensure the function f(x) =px+q, for x≤1=tan(πx4), for 1<x<2 is differentiable at x = 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Determine all real values of p and q that ensure the function

f(x) `{:( = "p"x + "q"",", "for"  x ≤ 1),(= tan ((pix)/4)",", "for"  1 < x < 2):}` is differentiable at x = 1

योग

उत्तर

f is differentiable at x = 1.

∴ Lf'(1) = Rf'(1)    ...(1)

f(x) = px + q, for x ≤ 1

∴  f(1) = p(1) + q = p + q

Now, Lf'(1) = `lim_("h" -> 0^-) ("f"(1 + "h") - "f"(1))/"h"`

= `lim_("h" -> 0) (["p"(1 + "h") + "q"] - ["p" + "q"])/"h"`  ...[∵ f(x) = px + q, for x ≤ 1]

= `lim_("h" -> 0) ("p" + "ph" + "q" - "p" - "q")/"h"`

= `lim_("h" -> 0) "ph"/"p"`

= `lim_("h" -> 0) "p"`    ...[∵ h → 0, ∴ h ≠ 0]

= p

Rf'(1) = `lim_("h" -> 0^+) ("f"(1 + "h") - "f"(1))/"h"`

= `lim_("h" -> 0) (tan[(pi(1 + "h"))/4] - ["p" + "q"])/"h"   ...[because "f"(x) = tan((pix)/4),  "for"  1 < x < 2]`

∵ Rf'(1) exists, we must have

p + q = 1   ...(2)

∴ Rf'(1) = `lim_("h" -> 0) (tan[pi/4 + (pi"h")/4] - 1)/"h"`

= `lim_("h" -> 0) (tan[pi/4 + (pi"h")/4] - tan  pi/4)/"h"`

= `lim_("h" -> 0) (tan[pi/4 + (pi"h")/4 - pi/4][1 + tan (pi/4 + (pi"h")/4) tan  pi/4])/"h"`   ...[∵ tan A – tan B = tan(A – B) (1 + tan A tan B)]

= `lim_("h" -> 0) {[(tan  (pi"h")/4)/(((pi"h")/4))][1 + tan (pi/4 + (pi"h")/4) tan  pi/4] xx pi/4}`

= `pi/4[lim_("h" -> 0) tan((pi"h")/4)/((pi"h")/4)] xx  lim_("h" -> 0) [ 1 + tan(pi/4 xx (pi"h")/4) tan  pi/4]`

= `pi/4 xx 1 xx [1 + tan(pi/4 + 0) tan  pi/4]   ...[because "h" -> 0, (pi"h")/4 -> 0  "and" lim_(theta -> 0) tan theta/theta = 1]`

= `pi/4 xx [1 + 1 xx 1]`

= `pi/2`

∴ p = `pi/2`   ...[By (1)]

Substituting the value of p in (2), we get

∴ `pi/2 + "q"` = 1

∴ q = `1 - pi/2 = (2 - pi)/2`

∴ p = `pi/2`, q = `(2 - pi)/2`

shaalaa.com
Definition of Derivative and Differentiability
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differentiation - Miscellaneous Exercise 9 [पृष्ठ १९५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 9 Differentiation
Miscellaneous Exercise 9 | Q II. (4) | पृष्ठ १९५

संबंधित प्रश्न

Find the derivative of the following function w.r.t. x.:

x–9


Find the derivative of the following functions w. r. t. x.:

`x^(3/2)`


Find the derivative of the following function w. r. t. x.:

`7xsqrt x`


Differentiate the following w. r. t. x.: x5 + 3x4


Differentiate the following w. r. t. x. : `x sqrtx + logx − e^x`


Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`


Differentiate the following w. r. t. x. : `2/7 x^(7/2) + 5/2 x^(2/5)`


Differentiate the following w. r. t. x. : x3 log x


Differentiate the following w. r. t. x. : `x^(5/2) e^x`


Differentiate the following w. r. t. x. : ex log x


Differentiate the following w. r. t. x. : x3 .3x


Find the derivative of the following w. r. t. x by using method of first principle:

x2 + 3x – 1


Find the derivative of the following w. r. t. x by using method of first principle:

sin (3x)


Find the derivative of the following w. r. t. x by using method of first principle:

e2x+1


Find the derivative of the following w. r. t. x by using method of first principle:

3x 


Find the derivative of the following w. r. t. x by using method of first principle:

log (2x + 5)


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

`sqrt(2x + 5)` at x = 2


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

tan x at x = `pi/4`


Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:

cos x at x = `(5pi)/4`


Show that f(x) = x2 is continuous and differentiable at x = 0


Discuss the continuity and differentiability of f(x) = x |x| at x = 0


Discuss the continuity and differentiability of f(x) at x = 2

f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]


If f(x) `{:(= sin x - cos x, "if"  x ≤ pi/2),(= 2x - pi + 1, "if"  x > pi /2):}` Test the continuity and differentiability of f at x = `π/2`


Examine the function

f(x) `{:(= x^2 cos (1/x)",", "for"  x ≠ 0),(= 0",", "for"  x = 0):}`

for continuity and differentiability at x = 0


Select the correct answer from the given alternative:

If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =


Select the correct answer from the given alternative:

If f(x) `{:(= 2x + 6, "for"  0 ≤ x ≤ 2),(= "a"x^2 + "b"x, "for"  2 < x ≤4):}` is differentiable at x = 2 then the values of a and b are


Select the correct answer from the given alternative:

If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =


Determine whether the following function is differentiable at x = 3 where,

f(x) `{:(= x^2 + 2","  ,  "for"  x ≥ 3),(= 6x - 7"," ,  "for"  x < 3):}`


Find the values of p and q that make function f(x) differentiable everywhere on R

f(x) `{:( = 3 - x"," , "for"  x < 1),(= "p"x^2 + "q"x",", "for"  x ≥ 1):}`


If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×