Advertisements
Advertisements
प्रश्न
Differentiate the following:
y = (2x – 5)4 (8x2 – 5)–3
उत्तर
y = (2x – 5)4 (8x2 – 5)–3
`("d"y)/("d"x) = (2x - 5)^4 xx "d"/("d"x) (8x^2 - 5)^(-3) + (8x^2 - 5)^(-3) xx "d"/("d"x) (2x - 5)^4` .......(By product rule)
`("d"y)/("d"x) = (2x - 5)^4 xx - 3(8x^2 - 5)^(- 3 - 1) (8 xx 2x - 0) + (8x^2 - 5)^(-3) xx 4(2x - 5)^(4 - 1) (2 xx 1 - 0)`
`("d"y)/("d"x) = - 3(2x - 5)^4 (8x^2 - 5)^(-4) xx 16x + (8x^2 - 5)^(-3) xx 4(2x - 5)^3 (2 xx 1)`
`("d"y)/("d"x) = - 48x (2x - 5)^4 (8x^2 - 5)^(- 4) + 8(8x^2 - 5)^(- 3) (2x - 5)^3`
= `-48x (2x - 5)^4 xx 1/(8x^2 - 5)^4 + (8(2x - 5)^3)/(8x^2 - 5)^3`
= `(8(2x - 5)^3)/(8x^2 - 5)^3 [1 - (6x(2x - 5))/(8x^2 - 5)]`
= `(8(2x - 5)^3)/(8x^2 - 5)^3 xx [(8x^2 - 5 - 12x^2 + 30x)/(8x^2 - 5)]`
= `(8(2x - 5)^3)/(8x^2 - 5)^3 xx [- 4x^2 + 30x - 5]`
`("d"y)/("d"x) = (8(2x - 5)^3)/(8x^2 - 5)^4 xx (30x - 4x^2 - 5)`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `(tanx - 1)/secx`
Differentiate the following:
y = tan 3x
Differentiate the following:
y = `root(3)(1 + x^3)`
Differentiate the following:
y = `"e"^sqrt(x)`
Differentiate the following:
F(x) = (x3 + 4x)7
Differentiate the following:
f(t) = `root(3)(1 + tan "t")`
Differentiate the following:
y = 4 sec 5x
Differentiate the following:
s(t) = `root(4)(("t"^3 + 1)/("t"^3 - 1)`
Differentiate the following:
y = `(sin^2x)/cos x`
Differentiate the following:
y = `sqrt(1 + 2tanx)`
Differentiate the following:
y = `sqrt(x + sqrt(x + sqrt(x)`
Differentiate the following:
y = `sin(tan(sqrt(sinx)))`
Find the derivatives of the following:
`sqrt(x^2 + y^2) = tan^-1 (y/x)`
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)`
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
If u = `tan^-1 (sqrt(1 + x^2) - 1)/x` and v = `tan^-1 x`, find `("d"u)/("d"v)`
Choose the correct alternative:
If y = `1/4 u^4`, u = `2/3 x^3 + 5`, then `("d"y)/("d"x)` is
Choose the correct alternative:
The differential coefficient of `log_10 x` with respect to `log_x 10` is